# HG changeset patch # User luca_milaz # Date 1722796691 0 # Node ID 90185e1784abc49e2015e9c9f4d99086d80699b1 # Parent 33e4990610299b4ba3537263cfa6e0170f53ad05 Uploaded diff -r 33e499061029 -r 90185e1784ab marea_2/flux_to_map.py --- a/marea_2/flux_to_map.py Sun Aug 04 18:37:57 2024 +0000 +++ b/marea_2/flux_to_map.py Sun Aug 04 18:38:11 2024 +0000 @@ -815,6 +815,15 @@ return { id : list(map(utils.Float("Dataset values, not an argument"), values)) for id, values in dataset.items() }, IDs def jet_colormap(value): + """ + Generate an RGB color based on a single numeric value using a colormap similar to MATLAB's 'jet'. + + Args: + value (float): A numeric value to be mapped to a color. + + Returns: + numpy.ndarray: An array of RGB color components (in the range [0, 1]). + """ # Ensure value is a single numeric value value = abs(value) @@ -829,12 +838,33 @@ return rgb def rgb_to_hex(rgb): + """ + Convert RGB values (0-1 range) to hexadecimal color format. + + Args: + rgb (numpy.ndarray): An array of RGB color components (in the range [0, 1]). + + Returns: + str: The color in hexadecimal format (e.g., '#ff0000' for red). + """ # Convert RGB values (0-1 range) to hexadecimal format rgb = (rgb * 255).astype(int) return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str]) -> None: + """ + Compute and visualize the metabolic map based on mean and median of the input fluxes. + The fluxes are normalised across classes/datasets and visualised using the jet colormap. + + Args: + metabMap (ET.ElementTree): An XML tree representing the metabolic map. + class_pat (Dict[str, List[List[float]]]): A dictionary where keys are class names and values are lists of enrichment values. + ids (List[str]): A list of reaction IDs to be used for coloring arrows. + + Returns: + None + """ # Create copies only if they are needed metabMap_mean = copy.deepcopy(metabMap) metabMap_median = copy.deepcopy(metabMap) @@ -867,6 +897,17 @@ save_and_convert(metabMap_median, "median", key) def apply_arrow(metabMap, rxn_id, color): + """ + Apply an arrow to a specific reaction in the metabolic map with a given color. + + Args: + metabMap (ET.ElementTree): An XML tree representing the metabolic map. + rxn_id (str): The ID of the reaction to which the arrow will be applied. + color (str): The color of the arrow in hexadecimal format. + + Returns: + None + """ arrow = Arrow(width=5, col=color) arrow.styleReactionElements(metabMap, rxn_id, mindReactionDir=False) idOpt1, idOpt2 = getArrowHeadElementId(rxn_id) @@ -875,6 +916,17 @@ arrow.applyTo(idOpt2, metabMap, arrow.toStyleStr(downSizedForTips=True)) def save_and_convert(metabMap, map_type, key): + """ + Save the metabolic map as an SVG file and optionally convert it to PNG and PDF formats. + + Args: + metabMap (ET.ElementTree): An XML tree representing the metabolic map. + map_type (str): The type of map ('mean' or 'median'). + key (str): The key identifying the specific map. + + Returns: + None + """ svgFilePath = utils.FilePath(f"SVG Map {map_type} - {key}", ext=utils.FileFormat.SVG, prefix="result") utils.writeSvg(svgFilePath, metabMap) if ARGS.generate_pdf: