# HG changeset patch # User luca_milaz # Date 1722862457 0 # Node ID a07405bcd3f36f133ff8c4ff20641844fc9885a6 # Parent 75454fbbb893db65ecc3d25000d8fe8126a979c4 Uploaded diff -r 75454fbbb893 -r a07405bcd3f3 marea_2/flux_to_map.py --- a/marea_2/flux_to_map.py Mon Aug 05 12:47:40 2024 +0000 +++ b/marea_2/flux_to_map.py Mon Aug 05 12:54:17 2024 +0000 @@ -844,7 +844,9 @@ rgb = (np.array(rgb) * 255).astype(int) return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) -def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath): + + +def save_colormap_image(min_value: float, max_value: float, path: utils.FilePath, colorMap:str="jet"): """ Create and save an image of the colormap showing the gradient and its range. @@ -855,7 +857,7 @@ """ # Create a colormap using matplotlib - cmap = plt.get_cmap("jet") + cmap = plt.get_cmap(colorMap) # Create a figure and axis fig, ax = plt.subplots(figsize=(6, 1)) @@ -866,8 +868,8 @@ gradient = np.vstack((gradient, gradient)) # Add min and max value annotations - ax.text(0, 0.5, f'{min_value}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') - ax.text(1, 0.5, f'{max_value}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') + ax.text(0, 0.5, f'{np.round(min_value, 3)}', va='center', ha='right', transform=ax.transAxes, fontsize=12, color='black') + ax.text(1, 0.5, f'{np.round(min_value, 3)}', va='center', ha='left', transform=ax.transAxes, fontsize=12, color='black') # Display the gradient image @@ -879,10 +881,15 @@ plt.close() pass -def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str]) -> None: +def min_nonzero_abs(arr): + # Flatten the array and filter out zeros, then find the minimum of the remaining values + non_zero_elements = np.abs(arr)[np.abs(arr) > 0] + return np.min(non_zero_elements) if non_zero_elements.size > 0 else None + +def computeEnrichmentMeanMedian(metabMap: ET.ElementTree, class_pat: Dict[str, List[List[float]]], ids: List[str], colormap:str) -> None: """ Compute and visualize the metabolic map based on mean and median of the input fluxes. - The fluxes are normalised across classes/datasets and visualised using the jet colormap. + The fluxes are normalised across classes/datasets and visualised using the given colormap. Args: metabMap (ET.ElementTree): An XML tree representing the metabolic map. @@ -904,16 +911,16 @@ max_flux_medians = max(np.max(np.abs(arr)) for arr in medians.values()) max_flux_means = max(np.max(np.abs(arr)) for arr in means.values()) - min_flux_medians = min(np.min(np.abs(arr)) for arr in medians.values()) - min_flux_means = min(np.min(np.abs(arr)) for arr in means.values()) + min_flux_medians = min(min_nonzero_abs(arr) for arr in medians.values()) + min_flux_means = min(min_nonzero_abs(arr) for arr in means.values()) medians = {key: median/max_flux_medians for key, median in medians.items()} means = {key: mean/max_flux_means for key, mean in means.items()} - save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix="result")) - save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix="result")) + save_colormap_image(min_flux_medians, max_flux_medians, utils.FilePath("Color map median", ext=utils.FileFormat.PNG, prefix="result"), colormap) + save_colormap_image(min_flux_means, max_flux_means, utils.FilePath("Color map mean", ext=utils.FileFormat.PNG, prefix="result"), colormap) - cmap = plt.get_cmap("jet") + cmap = plt.get_cmap(colormap) for key in class_pat: # Create color mappings for median and mean @@ -999,14 +1006,16 @@ ids, class_pat = getClassesAndIdsFromDatasets(ARGS.input_datas_fluxes, ARGS.input_data_fluxes, ARGS.input_class_fluxes, ARGS.names_fluxes) + ARGS.colormap="jet" #to add to user interface, choice amongst matplotlib colormaps + if(ARGS.choice_map == utils.Model.HMRcore): temp_map = utils.Model.HMRcore_no_legend - computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids) + computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.colormap) elif(ARGS.choice_map == utils.Model.ENGRO2): temp_map = utils.Model.ENGRO2_no_legend - computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids) + computeEnrichmentMeanMedian(temp_map.getMap(ARGS.tool_dir), class_pat, ids, ARGS.colormap) else: - computeEnrichmentMeanMedian(core_map, class_pat, ids) + computeEnrichmentMeanMedian(core_map, class_pat, ids, ARGS.colormap) computeEnrichment(core_map, class_pat, ids)