# HG changeset patch # User luca_milaz # Date 1726650781 0 # Node ID cee894a3e41c51fc6f42df8dfd456f036cd8f0d1 # Parent 86f6eff18ea8d32f52f4f8e79a3f422ebd9aef41 Uploaded diff -r 86f6eff18ea8 -r cee894a3e41c marea_2/flux_simulation.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/marea_2/flux_simulation.py Wed Sep 18 09:13:01 2024 +0000 @@ -0,0 +1,437 @@ +import argparse +import utils.general_utils as utils +from typing import Optional, List +import os +import numpy as np +import pandas as pd +import cobra +import utils.CBS_backend as CBS_backend +from joblib import Parallel, delayed, cpu_count +from cobra.sampling import OptGPSampler +import sys + +################################# process args ############################### +def process_args(args :List[str]) -> argparse.Namespace: + """ + Processes command-line arguments. + + Args: + args (list): List of command-line arguments. + + Returns: + Namespace: An object containing parsed arguments. + """ + parser = argparse.ArgumentParser(usage = '%(prog)s [options]', + description = 'process some value\'s') + + parser.add_argument('-ol', '--out_log', + help = "Output log") + + parser.add_argument('-td', '--tool_dir', + type = str, + required = True, + help = 'your tool directory') + + parser.add_argument('-in', '--input', + required = True, + type=str, + help = 'inputs bounds') + + parser.add_argument('-ni', '--names', + required = True, + type=str, + help = 'cell names') + + parser.add_argument( + '-ms', '--model_selector', + type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom], + help = 'chose which type of model you want use') + + parser.add_argument("-mo", "--model", type = str) + + parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name") + + parser.add_argument('-a', '--algorithm', + type = str, + choices = ['OPTGP', 'CBS'], + required = True, + help = 'choose sampling algorithm') + + parser.add_argument('-th', '--thinning', + type = int, + default= 100, + required=False, + help = 'choose thinning') + + parser.add_argument('-ns', '--n_samples', + type = int, + required = True, + help = 'choose how many samples') + + parser.add_argument('-sd', '--seed', + type = int, + required = True, + help = 'seed') + + parser.add_argument('-nb', '--n_batches', + type = int, + required = True, + help = 'choose how many batches') + + parser.add_argument('-ot', '--output_type', + type = str, + required = True, + help = 'output type') + + parser.add_argument('-ota', '--output_type_analysis', + type = str, + required = False, + help = 'output type analysis') + + ARGS = parser.parse_args() + return ARGS + +########################### warning ########################################### +def warning(s :str) -> None: + """ + Log a warning message to an output log file and print it to the console. + + Args: + s (str): The warning message to be logged and printed. + + Returns: + None + """ + with open(ARGS.out_log, 'a') as log: + log.write(s + "\n\n") + print(s) + + +def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None: + dataset.index.name = 'Reactions' + dataset.to_csv(ARGS.output_folder + name + ".csv", sep = '\t', index = keep_index) + +############################ dataset input #################################### +def read_dataset(data :str, name :str) -> pd.DataFrame: + """ + Read a dataset from a CSV file and return it as a pandas DataFrame. + + Args: + data (str): Path to the CSV file containing the dataset. + name (str): Name of the dataset, used in error messages. + + Returns: + pandas.DataFrame: DataFrame containing the dataset. + + Raises: + pd.errors.EmptyDataError: If the CSV file is empty. + sys.exit: If the CSV file has the wrong format, the execution is aborted. + """ + try: + dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') + except pd.errors.EmptyDataError: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + if len(dataset.columns) < 2: + sys.exit('Execution aborted: wrong format of ' + name + '\n') + return dataset + + + +def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None: + """ + Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. + + Args: + model (cobra.Model): The COBRA model to sample from. + model_name (str): The name of the model, used in naming output files. + n_samples (int, optional): Number of samples per batch. Default is 1000. + thinning (int, optional): Thinning parameter for the sampler. Default is 100. + n_batches (int, optional): Number of batches to run. Default is 1. + seed (int, optional): Random seed for reproducibility. Default is 0. + + Returns: + None + """ + + for i in range(0, n_batches): + optgp = OptGPSampler(model, thinning, seed) + samples = optgp.sample(n_samples) + samples.to_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv', index=False) + seed+=1 + samplesTotal = pd.DataFrame() + for i in range(0, n_batches): + samples_batch = pd.read_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv') + samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) + + write_to_file(samplesTotal.T, model_name, True) + + for i in range(0, n_batches): + os.remove(ARGS.output_folder + model_name + '_'+ str(i)+'_OPTGP.csv') + pass + + +def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None: + """ + Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. + + Args: + model (cobra.Model): The COBRA model to sample from. + model_name (str): The name of the model, used in naming output files. + n_samples (int, optional): Number of samples per batch. Default is 1000. + n_batches (int, optional): Number of batches to run. Default is 1. + seed (int, optional): Random seed for reproducibility. Default is 0. + + Returns: + None + """ + + df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6) + + df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed) + + for i in range(0, n_batches): + samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples)) + try: + CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples) + except Exception as e: + utils.logWarning( + "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e), + ARGS.out_log) + CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], + samples) + utils.logWarning(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log) + samples.to_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv', index=False) + + samplesTotal = pd.DataFrame() + for i in range(0, n_batches): + samples_batch = pd.read_csv(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv') + samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True) + + write_to_file(samplesTotal.T, model_name, True) + + for i in range(0, n_batches): + os.remove(ARGS.output_folder + model_name + '_'+ str(i)+'_CBS.csv') + pass + + +def model_sampler(model_input_original:cobra.Model, bounds_path:str, cell_name:str)-> List[pd.DataFrame]: + """ + Prepares the model with bounds from the dataset and performs sampling and analysis based on the selected algorithm. + + Args: + model_input_original (cobra.Model): The original COBRA model. + bounds_path (str): Path to the CSV file containing the bounds dataset. + cell_name (str): Name of the cell, used to generate filenames for output. + + Returns: + List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. + """ + + model_input = model_input_original.copy() + bounds_df = read_dataset(bounds_path, "bounds dataset") + for rxn_index, row in bounds_df.iterrows(): + model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound + model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound + + name = cell_name.split('.')[0] + + if ARGS.algorithm == 'OPTGP': + OPTGP_sampler(model_input, name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) + + elif ARGS.algorithm == 'CBS': + CBS_sampler(model_input, name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) + + df_mean, df_median, df_quantiles = fluxes_statistics(name, ARGS.output_types) + + if("fluxes" not in ARGS.output_types): + os.remove(ARGS.output_folder + name + '.csv') + + returnList = [] + returnList.append(df_mean) + returnList.append(df_median) + returnList.append(df_quantiles) + + df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, name, ARGS.output_type_analysis) + + if("pFBA" in ARGS.output_type_analysis): + returnList.append(df_pFBA) + if("FVA" in ARGS.output_type_analysis): + returnList.append(df_FVA) + if("sensitivity" in ARGS.output_type_analysis): + returnList.append(df_sensitivity) + + return returnList + +def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]: + """ + Computes statistics (mean, median, quantiles) for the fluxes. + + Args: + model_name (str): Name of the model, used in filename for input. + output_types (List[str]): Types of statistics to compute (mean, median, quantiles). + + Returns: + List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. + """ + + df_mean = pd.DataFrame() + df_median= pd.DataFrame() + df_quantiles= pd.DataFrame() + + df_samples = pd.read_csv(ARGS.output_folder + model_name + '.csv', sep = '\t', index_col = 0).T + df_samples = df_samples.round(8) + + for output_type in output_types: + if(output_type == "mean"): + df_mean = df_samples.mean() + df_mean = df_mean.to_frame().T + df_mean = df_mean.reset_index(drop=True) + df_mean.index = [model_name] + elif(output_type == "median"): + df_median = df_samples.median() + df_median = df_median.to_frame().T + df_median = df_median.reset_index(drop=True) + df_median.index = [model_name] + elif(output_type == "quantiles"): + newRow = [] + cols = [] + for rxn in df_samples.columns: + quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) + newRow.append(quantiles[0.25]) + cols.append(rxn + "_q1") + newRow.append(quantiles[0.5]) + cols.append(rxn + "_q2") + newRow.append(quantiles[0.75]) + cols.append(rxn + "_q3") + df_quantiles = pd.DataFrame(columns=cols) + df_quantiles.loc[0] = newRow + df_quantiles = df_quantiles.reset_index(drop=True) + df_quantiles.index = [model_name] + + return df_mean, df_median, df_quantiles + +def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]: + """ + Performs flux analysis including pFBA, FVA, and sensitivity analysis. + + Args: + model (cobra.Model): The COBRA model to analyze. + model_name (str): Name of the model, used in filenames for output. + output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). + + Returns: + List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. + """ + + df_pFBA = pd.DataFrame() + df_FVA= pd.DataFrame() + df_sensitivity= pd.DataFrame() + + for output_type in output_types: + if(output_type == "pFBA"): + model.objective = "Biomass" + solution = cobra.flux_analysis.pfba(model) + fluxes = solution.fluxes + df_pFBA.loc[0,[rxn._id for rxn in model.reactions]] = fluxes.tolist() + df_pFBA = df_pFBA.reset_index(drop=True) + df_pFBA.index = [model_name] + df_pFBA = df_pFBA.astype(float).round(6) + elif(output_type == "FVA"): + fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) + columns = [] + for rxn in fva.index.to_list(): + columns.append(rxn + "_min") + columns.append(rxn + "_max") + df_FVA= pd.DataFrame(columns = columns) + for index_rxn, row in fva.iterrows(): + df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] + df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] + df_FVA = df_FVA.reset_index(drop=True) + df_FVA.index = [model_name] + df_FVA = df_FVA.astype(float).round(6) + elif(output_type == "sensitivity"): + model.objective = "Biomass" + solution_original = model.optimize().objective_value + reactions = model.reactions + single = cobra.flux_analysis.single_reaction_deletion(model) + newRow = [] + df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) + for rxn in reactions: + newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) + df_sensitivity.loc[model_name] = newRow + df_sensitivity = df_sensitivity.astype(float).round(6) + return df_pFBA, df_FVA, df_sensitivity + +############################# main ########################################### +def main() -> None: + """ + Initializes everything and sets the program in motion based on the fronted input arguments. + + Returns: + None + """ + if not os.path.exists('flux_simulation/'): + os.makedirs('flux_simulation/') + + num_processors = cpu_count() + + global ARGS + ARGS = process_args(sys.argv) + + ARGS.output_folder = 'flux_simulation/' + + + model_type :utils.Model = ARGS.model_selector + if model_type is utils.Model.Custom: + model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext) + else: + model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir) + + ARGS.bounds = ARGS.input.split(",") + ARGS.bounds_name = ARGS.names.split(",") + ARGS.output_types = ARGS.output_type.split(",") + ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") + + + results = Parallel(n_jobs=num_processors)(delayed(model_sampler)(model, bounds_path, cell_name) for bounds_path, cell_name in zip(ARGS.bounds, ARGS.bounds_name)) + + all_mean = pd.concat([result[0] for result in results], ignore_index=False) + all_median = pd.concat([result[1] for result in results], ignore_index=False) + all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) + + if("mean" in ARGS.output_types): + all_mean = all_mean.fillna(0.0) + all_mean = all_mean.sort_index() + write_to_file(all_mean.T, "mean", True) + + if("median" in ARGS.output_types): + all_median = all_median.fillna(0.0) + all_median = all_median.sort_index() + write_to_file(all_median.T, "median", True) + + if("quantiles" in ARGS.output_types): + all_quantiles = all_quantiles.fillna(0.0) + all_quantiles = all_quantiles.sort_index() + write_to_file(all_quantiles.T, "quantiles", True) + + index_result = 3 + if("pFBA" in ARGS.output_type_analysis): + all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) + all_pFBA = all_pFBA.sort_index() + write_to_file(all_pFBA.T, "pFBA", True) + index_result+=1 + if("FVA" in ARGS.output_type_analysis): + all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False) + all_FVA = all_FVA.sort_index() + write_to_file(all_FVA.T, "FVA", True) + index_result+=1 + if("sensitivity" in ARGS.output_type_analysis): + all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) + all_sensitivity = all_sensitivity.sort_index() + write_to_file(all_sensitivity.T, "sensitivity", True) + + pass + +############################################################################## +if __name__ == "__main__": + main() \ No newline at end of file