changeset 366:5b703d9a45d5 draft

Uploaded
author luca_milaz
date Wed, 18 Sep 2024 09:34:01 +0000
parents d49f290ad86e
children b2b2312b8f77
files marea_2/ras_to_bounds.py marea_2/ras_to_bounds.xml
diffstat 2 files changed, 0 insertions(+), 341 deletions(-) [+]
line wrap: on
line diff
--- a/marea_2/ras_to_bounds.py	Wed Sep 18 09:30:38 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,231 +0,0 @@
-import argparse
-import utils.general_utils as utils
-from typing import Optional, List
-import os
-import numpy as np
-import pandas as pd
-import cobra
-import sys
-import csv
-from joblib import Parallel, delayed, cpu_count
-
-################################# process args ###############################
-def process_args(args :List[str]) -> argparse.Namespace:
-    """
-    Processes command-line arguments.
-
-    Args:
-        args (list): List of command-line arguments.
-
-    Returns:
-        Namespace: An object containing parsed arguments.
-    """
-    parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
-                                     description = 'process some value\'s')
-    
-    parser.add_argument(
-        '-ms', '--model_selector', 
-        type = utils.Model, default = utils.Model.ENGRO2, choices = [utils.Model.ENGRO2, utils.Model.Custom],
-        help = 'chose which type of model you want use')
-    
-    parser.add_argument("-mo", "--model", type = str,
-        help = "path to input file with custom rules, if provided")
-    
-    parser.add_argument("-mn", "--model_name", type = str, help = "custom mode name")
-
-    parser.add_argument(
-        '-mes', '--medium_selector', 
-        default = "allOpen",
-        help = 'chose which type of medium you want use')
-    
-    parser.add_argument("-meo", "--medium", type = str,
-        help = "path to input file with custom medium, if provided")
-
-    parser.add_argument('-ol', '--out_log', 
-                        help = "Output log")
-    
-    parser.add_argument('-td', '--tool_dir',
-                        type = str,
-                        required = True,
-                        help = 'your tool directory')
-    
-    parser.add_argument('-ir', '--input_ras',
-                        type=str,
-                        required = False,
-                        help = 'input ras')
-    
-    parser.add_argument('-rs', '--ras_selector',
-                        required = True,
-                        type=utils.Bool("using_RAS"),
-                        help = 'ras selector')
-    
-    ARGS = parser.parse_args()
-    return ARGS
-
-########################### warning ###########################################
-def warning(s :str) -> None:
-    """
-    Log a warning message to an output log file and print it to the console.
-
-    Args:
-        s (str): The warning message to be logged and printed.
-    
-    Returns:
-      None
-    """
-    with open(ARGS.out_log, 'a') as log:
-        log.write(s + "\n\n")
-    print(s)
-
-############################ dataset input ####################################
-def read_dataset(data :str, name :str) -> pd.DataFrame:
-    """
-    Read a dataset from a CSV file and return it as a pandas DataFrame.
-
-    Args:
-        data (str): Path to the CSV file containing the dataset.
-        name (str): Name of the dataset, used in error messages.
-
-    Returns:
-        pandas.DataFrame: DataFrame containing the dataset.
-
-    Raises:
-        pd.errors.EmptyDataError: If the CSV file is empty.
-        sys.exit: If the CSV file has the wrong format, the execution is aborted.
-    """
-    try:
-        dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
-    except pd.errors.EmptyDataError:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    if len(dataset.columns) < 2:
-        sys.exit('Execution aborted: wrong format of ' + name + '\n')
-    return dataset
-
-
-def apply_ras_bounds(model, ras_row, rxns_ids):
-    """
-    Adjust the bounds of reactions in the model based on RAS values.
-
-    Args:
-        model (cobra.Model): The metabolic model to be modified.
-        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
-        rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
-    
-    Returns:
-        None
-    """
-    for reaction in rxns_ids:
-        if reaction in ras_row.index and pd.notna(ras_row[reaction]):
-            rxn = model.reactions.get_by_id(reaction)
-            scaling_factor = ras_row[reaction]
-            rxn.lower_bound *= scaling_factor
-            rxn.upper_bound *= scaling_factor
-
-def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder):
-    """
-    Process a single RAS cell, apply bounds, and save the bounds to a CSV file.
-
-    Args:
-        cellName (str): The name of the RAS cell (used for naming the output file).
-        ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds.
-        model (cobra.Model): The metabolic model to be modified.
-        rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied.
-        output_folder (str): Folder path where the output CSV file will be saved.
-    
-    Returns:
-        None
-    """
-    model_new = model.copy()
-    apply_ras_bounds(model_new, ras_row, rxns_ids)
-    bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-    bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True)
-
-def generate_bounds(model: cobra.Model, medium: dict, ras=None, output_folder='output/') -> pd.DataFrame:
-    """
-    Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments.
-    
-    Args:
-        model (cobra.Model): The metabolic model for which bounds will be generated.
-        medium (dict): A dictionary where keys are reaction IDs and values are the medium conditions.
-        ras (pd.DataFrame, optional): A DataFrame with RAS scaling factors for different cell types. Defaults to None.
-        output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'.
-
-    Returns:
-        pd.DataFrame: DataFrame containing the bounds of reactions in the model.
-    """
-    rxns_ids = [rxn.id for rxn in model.reactions]
-    
-    # Set medium conditions
-    for reaction, value in medium.items():
-        if value is not None:
-            model.reactions.get_by_id(reaction).lower_bound = -float(value)
-    
-    # Perform Flux Variability Analysis (FVA)
-    df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
-    
-    # Set FVA bounds
-    for reaction in rxns_ids:
-        rxn = model.reactions.get_by_id(reaction)
-        rxn.lower_bound = float(df_FVA.loc[reaction, "minimum"])
-        rxn.upper_bound = float(df_FVA.loc[reaction, "maximum"])
-
-    if ras is not None:
-        Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)(cellName, ras_row, model, rxns_ids, output_folder) for cellName, ras_row in ras.iterrows())
-    else:
-        model_new = model.copy()
-        apply_ras_bounds(model_new, pd.Series([1]*len(rxns_ids), index=rxns_ids), rxns_ids)
-        bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model_new.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"])
-        bounds.to_csv(output_folder + "bounds.csv", sep='\t', index=True)
-
-
-############################# main ###########################################
-def main() -> None:
-    """
-    Initializes everything and sets the program in motion based on the fronted input arguments.
-
-    Returns:
-        None
-    """
-    if not os.path.exists('ras_to_bounds'):
-        os.makedirs('ras_to_bounds')
-
-
-    global ARGS
-    ARGS = process_args(sys.argv)
-
-    ARGS.output_folder = 'ras_to_bounds/'
-
-    if(ARGS.ras_selector == True):
-        ras = read_dataset(ARGS.input_ras, "ras dataset")
-        ras.replace("None", None, inplace=True)
-        ras.set_index("Reactions", drop=True, inplace=True)
-        ras = ras.T
-        ras = ras.astype(float)
-    
-    model_type :utils.Model = ARGS.model_selector
-    if model_type is utils.Model.Custom:
-        model = model_type.getCOBRAmodel(customPath = utils.FilePath.fromStrPath(ARGS.model), customExtension = utils.FilePath.fromStrPath(ARGS.model_name).ext)
-    else:
-        model = model_type.getCOBRAmodel(toolDir=ARGS.tool_dir)
-
-    if(ARGS.medium_selector == "Custom"):
-        medium = read_dataset(ARGS.medium, "medium dataset")
-        medium.set_index(medium.columns[0], inplace=True)
-        medium = medium.astype(float)
-        medium = medium[medium.columns[0]].to_dict()
-    else:
-        df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
-        ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
-        medium = df_mediums[[ARGS.medium_selector]]
-        medium = medium[ARGS.medium_selector].to_dict()
-
-    if(ARGS.ras_selector == True):
-        generate_bounds(model, medium, ras = ras, output_folder=ARGS.output_folder)
-    else:
-        generate_bounds(model, medium, output_folder=ARGS.output_folder)
-
-    pass
-        
-##############################################################################
-if __name__ == "__main__":
-    main()
\ No newline at end of file
--- a/marea_2/ras_to_bounds.xml	Wed Sep 18 09:30:38 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,110 +0,0 @@
-<tool id="MaREA RAS to bounds" name="RAStoBounds" version="2.0.0">
-    
-    <macros>
-        <import>marea_macros.xml</import>
-    </macros>
-
-	<requirements>
-        <requirement type="package" version="1.24.4">numpy</requirement>
-        <requirement type="package" version="2.0.3">pandas</requirement>
-		<requirement type="package" version="0.29.0">cobra</requirement>
-        <requirement type="package" version="5.2.2">lxml</requirement>
-        <requirement type="package" version="1.4.2">joblib</requirement>
-	</requirements>
-
-    <command detect_errors="exit_code">
-        <![CDATA[
-      	python $__tool_directory__/ras_to_bounds.py
-        --tool_dir $__tool_directory__
-        --model_selector $cond_model.model_selector
-        #if $cond_model.model_selector == 'Custom'
-            --model $model
-            --model_name $model.element_identifier
-        #end if
-        --medium_selector $cond_medium.medium_selector
-        #if $cond_medium.medium_selector == 'Custom'
-            --medium $medium
-        #end if
-        --ras_selector $cond_ras.ras_choice
-        #if $cond_ras.ras_choice == "True"
-        	--input_ras $cond_ras.input_ras
-        #end if
-        --out_log $log
-        ]]>
-    </command>
-    <inputs>
-        <conditional name="cond_model">
-            <expand macro="options_ras_to_bounds_model"/>
-            <when value="Custom">
-                <param name="model" argument="--model" type="data" format="json, xml" label="Custom model" />
-            </when>
-        </conditional> 
-
-        <conditional name="cond_ras">
-			<param name="ras_choice" argument="--ras_choice" type="select" label="Do want to use RAS?">
-                	<option value="True" selected="true">Yes</option>
-                	<option value="False">No</option>
-        	</param>
-            <when value="True">
-                <param name="input_ras" argument="--input_ras" multiple="false" type="data" format="tabular, csv, tsv" label="RAS matrix:" />
-            </when>
-        </conditional>  
-        
-        <conditional name="cond_medium">
-            <expand macro="options_ras_to_bounds_medium"/>
-            <when value="Custom">
-                <param name="medium" argument="--medium" type="data" format="tabular, csv, tsv" label="Custom medium" />
-            </when>
-        </conditional> 
-
-    </inputs>
-
-    <outputs>
-        <data format="txt" name="log" label="RAStoBounds- Log" />
-        
-        <collection name="ras_to_bounds" type="list" label="Ras to Bounds">
-            <discover_datasets name = "collection" pattern="__name_and_ext__" directory="ras_to_bounds"/>
-        </collection>
-
-    </outputs>
-
-    <help>
-
-    <![CDATA[
-
-What it does
--------------
-
-This tool generates the reactions bounds for a given metabolic model (JSON or XML format) with and without the injection of the Reaction Activity Scores (RAS) within the metabolic model.
-Moreover, it enables to use custom/pre-defined growth mediums to constrain exchange reactions. For custom medium, It is suggested to use the template file returned by the Custom Data Generator tool.
-If the RAS matrix, generated by the RAS generator tool, is used, then a file of bounds is generated for each cell. Otherwise, a single bounds file is returned.
-
-Accepted files:
-    - A model: JSON or XML file reporting reactions and rules contained in the model.   
-    - RAS matrix: tab-separated RAS file as returned by RAS generator.
-    - Medium: tab-separated file containing lower and upper-bounds of medium reactions.
-
-Example medium file
--------------
-
-Custom medium:
-
-+------------+----------------+----------------+
-| Reaction ID|   lower_bound   |   upper_bound |  
-+============+================+================+
-| r1         |    0.123167    |    0.371355    | 
-+------------+----------------+----------------+   
-| r2         |    0.268765    |    0.765567    |  
-+------------+----------------+----------------+   
-
-
-Output:
--------------
-
-The tool generates:
-    - bounds: reporting the bounds of the model, or cells if RAS is used. Format: tab-separated.
-    - a log file (.txt).
-    ]]>
-    </help>
-    <expand macro="citations" />
-</tool>
\ No newline at end of file