Mercurial > repos > bitlab > plidflow
view PLIDflow/scripts/clusterfinder_Auto.R @ 6:795e11fac81b draft default tip
Included new tools for standardization
author | bitlab |
---|---|
date | Wed, 22 Apr 2020 06:12:00 -0400 |
parents | 6fcfa4756040 |
children |
line wrap: on
line source
# #clusterfinder_Auto.R makes a file containig the coordenates of the identified cluster/-s by Silhouette criterion # #!/usr/bin/env Rscript args = commandArgs(trailingOnly=TRUE) if(length(args) < 1){ stop("USE: Rscript clusterfinder_Auto.R <session_id>") } #Arguments definition session_id <- args[1] print(session_id) setwd(session_id) options(error=traceback) options(warn=-1) #Load required library library(cluster) #Load required libraries library(clValid) #Loading required package: cluster library(fpc) #Install NbClust package #install.packages("NbClust",dependencies = TRUE) #Loading required package: NbClust library(NbClust) #Read the dataset data_centers <- read.table("fillouts1file.txt", header=TRUE, sep=";", na.strings="") #data_centers <- read.table("fillouts1file.txt", header=TRUE, sep=";", na.strings="") #Run the XXX for selection of the number of clusters clustersdata <- NbClust(data_centers, diss=NULL, distance = "euclidean", min.nc=2, max.nc=15, method = "kmeans", index = "all", alphaBeale = 0.1) #capture.output(clustersdata$Best.nc[1,], file = "bestnumberclusters.txt") #capture.output(NbClust(data_centers, diss=NULL, distance = "euclidean", min.nc=2, max.nc=15, method = "kmeans", index = "all", alphaBeale = 0.1), file = "proofclusters.txt") #capture.output(NbClust(data_centers, diss=NULL, distance = "euclidean", min.nc=2, max.nc=15, method = "kmeans", index = "all", alphaBeale = 0.1), file = "numclusters.txt") #best_num_cluster <- scan("proofclusters.txt", what = character(), quiet = TRUE) k.max <- as.integer(rownames(table(clustersdata$Best.nc[1,]))[which.max(apply(table(clustersdata$Best.nc[1,]),MARGIN=1,max))]) km.res <- kmeans(as.matrix(data_centers), centers = k.max, nstart = 25) best_position <- as.integer(rownames(table(clustersdata$Best.nc[1,]))[which.max(apply(table(clustersdata$Best.nc[1,]),MARGIN=1,max))]) # Make clustercoordenates table #X Coordenate start_x <- best_position + 1 end_x <- start_x + (best_position - 1) cluster_pos_x <- 1 x_pos <- c() for (c in start_x:end_x){ x_pos[cluster_pos_x] <- km.res$centers[c] cluster_pos_x <- cluster_pos_x + 1 } #print(x_pos) #Y Coordenate start_y <- end_x + 1 end_y <- start_y + (best_position - 1) cluster_pos_y <- 1 y_pos <- c() for(cc in start_y:end_y){ y_pos[cluster_pos_y] <- km.res$centers[cc] cluster_pos_y <- cluster_pos_y + 1 } #print(y_pos) #Z Coordenate start_z <- end_y + 1 end_z <- start_z + (best_position - 1) cluster_pos_z <- 1 z_pos <- c() for(ccc in start_z:end_z){ z_pos[cluster_pos_z] <- km.res$centers[ccc] cluster_pos_z <- cluster_pos_z + 1 } #print(z_pos) #Create a file with clusters coordenates. Cluster coordenates are vectors x_pos, y_pos, z_pos num_filas <- length(x_pos) clusters_tabla <- matrix(1, nrow = num_filas, ncol = 4) #columns are column 1 number of ccluster, column 2 x-coordenates, colum 3 y-coordenates, column 4 z-coordenates ##Add number of cluster located in column 1 for(i in 1:num_filas){ clusters_tabla[i,1] <- i } ##Add cluster x,y,z-coordenates in clusters_tabla #x-coordenates v_pos_x <- 1 for(f in 1:num_filas){ clusters_tabla[f,2] <- x_pos[v_pos_x] v_pos_x <- v_pos_x + 1 } #y-coordenates v_pos_y <- 1 for(ff in 1:num_filas){ clusters_tabla[ff,3] <- y_pos[v_pos_y] v_pos_y <- v_pos_y + 1 } #z-coordenates v_pos_z <- 1 for(fff in 1:num_filas){ clusters_tabla[fff,4] <- z_pos[v_pos_z] v_pos_z <- v_pos_z + 1 } #Write the head for the file which contains the number of clusters annd their coordenates cabecera_clusterscoordenates <- paste("cluster", sep = " ") cabecera <- c("x","y","z") for(i in 1:3){ cabecera_clusterscoordenates <- paste(cabecera_clusterscoordenates, cabecera[i], sep=" ") } #write(cabecera_clusterscoordenates, file="/home/galaxy/galaxy/tools/proteindocking/scripts/clusterscoordenates.txt", append= TRUE) write(cabecera_clusterscoordenates, file="clusterscoordenates.txt", append= TRUE) #Write rows containing number of cluster and coordenates for(i in 1:nrow(clusters_tabla)){ fila_completa <- paste(clusters_tabla[i,1], sep = " ") for(j in 2:ncol(clusters_tabla)){ fila_completa <- paste(fila_completa, clusters_tabla[i,j], sep=" ") } write(fila_completa, file="clusterscoordenates.txt", append= TRUE) #write(fila_completa, file="/home/galaxy/galaxy/tools/proteindocking/scripts/clusterscoordenates.txt", append= TRUE) } #Table to see Binding Sited finded in Galaxy screen #BS_screen <- scan("/home/galaxy/galaxy/tools/proteindocking/scripts/clusterscoordenates.txt", what = character(), quiet = TRUE) BS_screen <- scan("clusterscoordenates.txt", what = character(), quiet = TRUE) BS_table <- matrix(1, nrow = nrow(clusters_tabla), ncol = ncol(clusters_tabla)) bs_count <- 5 for(i in 1:nrow(clusters_tabla)){ for(j in 1:ncol(clusters_tabla)){ BS_table[i,j] <- BS_screen[bs_count] bs_count <- bs_count +1 } } colnames(BS_table) <- c("Binding Site", "X", "Y", "Z") print(BS_table)