Mercurial > repos > bornea > dotplot_runner
comparison Dotplot_Release/R_dotPlot_nc.R @ 0:dfa3436beb67 draft
Uploaded
author | bornea |
---|---|
date | Fri, 29 Jan 2016 09:56:02 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:dfa3436beb67 |
---|---|
1 #!/usr/bin/env Rscript | |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 pheatmapj_loc <- paste(args[9],"pheatmap_j.R",sep="/") | |
6 | |
7 library('latticeExtra') | |
8 library('RColorBrewer') | |
9 library('grid') | |
10 library(reshape2) | |
11 source(pheatmapj_loc) | |
12 | |
13 data.file <- read.table("SC_data.txt", sep="\t", header=TRUE, row.names=1) ### import spectral count data | |
14 data.file2 <- read.table("FDR_data.txt", sep="\t", header=TRUE, row.names=1) ### import FDR count data | |
15 bait_l <- scan(args[4], what="") ### import bait list | |
16 if(args[5] == 0) prey_l <- scan(args[6], what="") ### import prey list | |
17 methd <- args[7] | |
18 dist_methd <- args[8] | |
19 | |
20 #setting parameters | |
21 | |
22 Sfirst=as.numeric(args[1]) #first FDR cutoff | |
23 Ssecond=as.numeric(args[2]) #second FDR cutoff | |
24 maxp=as.integer(args[3]) #maximum value for a spectral count | |
25 | |
26 #extract only needed data | |
27 | |
28 if(args[5] == 0){ | |
29 remove <- vector() | |
30 remove <- prey_l[prey_l %in% row.names(data.file)] | |
31 prey_l <- prey_l[prey_l %in% remove] | |
32 remove <- bait_l[bait_l %in% names(data.file)] | |
33 bait_l <- bait_l[bait_l %in% remove] | |
34 data.file <- data.file[prey_l, bait_l] | |
35 data.file2 <- data.file2[prey_l, bait_l] | |
36 } else{ | |
37 remove <- vector() | |
38 remove <- bait_l[bait_l %in% names(data.file)] | |
39 bait_l <- bait_l[bait_l %in% remove] | |
40 data.file <- data.file[, bait_l] | |
41 data.file2 <- data.file2[, bait_l] | |
42 prey_keep = apply(data.file2, 1, function(x) sum(x<=Sfirst) >= 1) | |
43 data.file <- data.file[prey_keep,] | |
44 data.file2 <- data.file2[prey_keep,] | |
45 } | |
46 | |
47 #determine bait and prey ordering | |
48 | |
49 y_ord=factor(names(data.file[1,]),levels=bait_l) | |
50 | |
51 if(args[5] == 0){ | |
52 x_ord=factor(rownames(data.file),levels=prey_l) | |
53 } else { | |
54 | |
55 data.file <- data.file[which(rowSums(data.file) > 0),] | |
56 dist_prey <- dist(as.matrix(data.file), method= dist_methd) | |
57 | |
58 if(methd == "ward"){ | |
59 dist_prey <- dist_prey^2 | |
60 } | |
61 | |
62 hc_prey <- hclust(dist_prey, method = methd) | |
63 | |
64 data.file = data.file[hc_prey$order, , drop = FALSE] | |
65 data.file2 = data.file2[hc_prey$order, , drop = FALSE] | |
66 | |
67 x_ord=factor(row.names(data.file), levels=row.names(data.file)) | |
68 } | |
69 | |
70 df<-data.frame(y=rep(y_ord, nrow(data.file)) | |
71 ,x=rep(x_ord, each=ncol(data.file)) | |
72 ,z1=as.vector(t(data.file)) # Circle color | |
73 ,z2=as.vector(t(data.file/apply(data.file,1,max))) # Circle size | |
74 ,z3=as.vector(t(data.file2)) # FDR | |
75 ) | |
76 | |
77 df$z1[df$z1>maxp] <- maxp #maximum value for spectral count | |
78 df$z2[df$z2==0] <- NA | |
79 df$z3[df$z3>Ssecond] <- 0.05*maxp | |
80 df$z3[df$z3<=Ssecond & df$z3>Sfirst] <- 0.5*maxp | |
81 df$z3[df$z3<=Sfirst] <- 1*maxp | |
82 df$z4 <- df$z1 | |
83 df$z4[df$z4==0] <- 0 | |
84 df$z4[df$z4>0] <- 2.5 | |
85 | |
86 # The labeling for the colorkey | |
87 | |
88 labelat = c(0, maxp) | |
89 labeltext = c(0, maxp) | |
90 | |
91 # color scheme to use | |
92 | |
93 nmb.colors<-maxp | |
94 z.colors<-grey(rev(seq(0,0.9,0.9/nmb.colors))) #grayscale color scale | |
95 | |
96 #plot dotplot | |
97 | |
98 pl <- levelplot(z1~x*y, data=df | |
99 ,col.regions =z.colors #terrain.colors(100) | |
100 ,scales = list(x = list(rot = 90), y=list(cex=0.8), tck=0) # rotates X,Y labels and changes scale | |
101 ,colorkey = FALSE | |
102 #,colorkey = list(space="bottom", width=1.5, height=0.3, labels=list(at = labelat, labels = labeltext)) #put colorkey at top with my labeling scheme | |
103 ,xlab="Prey", ylab="Bait" | |
104 ,panel=function(x,y,z,...,col.regions){ | |
105 print(x) | |
106 z.c<-df$z1[ (df$x %in% as.character(x)) & (df$y %in% y)] | |
107 z.2<-df$z2[ (df$x %in% as.character(x)) & (df$y %in% y)] | |
108 z.3<-df$z3 | |
109 z.4<-df$z4 | |
110 panel.xyplot(x,y | |
111 ,as.table=TRUE | |
112 ,pch=21 # point type to use (circles in this case) | |
113 ,cex=((z.2-min(z.2,na.rm=TRUE))/(max(z.2,na.rm=TRUE)-min(z.2,na.rm=TRUE)))*3 #circle size | |
114 ,fill=z.colors[floor((z.c-min(z.c,na.rm=TRUE))*nmb.colors/(max(z.c,na.rm=TRUE)-min(z.c,na.rm=TRUE)))+1] # circle colors | |
115 ,col=z.colors[1+z.3] # border colors | |
116 ,lex=z.4 #border thickness | |
117 ) | |
118 } | |
119 #,main="Fold change" # graph main title | |
120 ) | |
121 if(ncol(data.file) > 4) ht=3.5+(0.36*((ncol(data.file)-1)-4)) else ht=3.5 | |
122 if(nrow(data.file) > 20) wd=8.25+(0.29*(nrow(data.file)-20)) else wd=5.7+(0.28*(nrow(data.file)-10)) | |
123 pdf("dotplot.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2) | |
124 print(pl) | |
125 dev.off() | |
126 | |
127 #plot heatmap | |
128 | |
129 heat_df <- acast(df, y~x, value.var="z1") | |
130 heat_df <- apply(heat_df, 2, rev) | |
131 | |
132 if(ncol(data.file) > 4) ht=3.5+(0.1*((ncol(data.file)-1)-4)) else ht=3.5 | |
133 if(nrow(data.file) > 20) wd=8.25+(0.1*(nrow(data.file)-20)) else wd=5+(0.1*(nrow(data.file)-10)) | |
134 pdf("heatmap_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2) | |
135 pheatmap_j(heat_df, scale="none", border_color="black", border_width = 0.1, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100)) | |
136 dev.off() | |
137 | |
138 pdf("heatmap_no_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2) | |
139 pheatmap_j(heat_df, scale="none", border_color=NA, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100)) | |
140 dev.off() |