Mercurial > repos > bornea > dotplot_runner
diff Dotplot_Release/pheatmap_j.R @ 0:dfa3436beb67 draft
Uploaded
author | bornea |
---|---|
date | Fri, 29 Jan 2016 09:56:02 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Dotplot_Release/pheatmap_j.R Fri Jan 29 09:56:02 2016 -0500 @@ -0,0 +1,719 @@ +lo = function(rown, coln, nrow, ncol, cellheight = NA, cellwidth = NA, treeheight_col, treeheight_row, legend, annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row, fontsize_col, ...){ + # Get height of colnames and length of rownames + if(!is.null(coln[1])){ + longest_coln = which.max(strwidth(coln, units = 'in')) + gp = list(fontsize = fontsize_col, ...) + coln_height = unit(1, "grobheight", textGrob(coln[longest_coln], rot = 90, gp = do.call(gpar, gp))) + unit(5, "bigpts") + } + else{ + coln_height = unit(5, "bigpts") + } + + if(!is.null(rown[1])){ + longest_rown = which.max(strwidth(rown, units = 'in')) + gp = list(fontsize = fontsize_row, ...) + rown_width = unit(1, "grobwidth", textGrob(rown[longest_rown], gp = do.call(gpar, gp))) + unit(10, "bigpts") + } + else{ + rown_width = unit(5, "bigpts") + } + + gp = list(fontsize = fontsize, ...) + # Legend position + if(!is.na(legend[1])){ + longest_break = which.max(nchar(names(legend))) + longest_break = unit(1.1, "grobwidth", textGrob(as.character(names(legend))[longest_break], gp = do.call(gpar, gp))) + title_length = unit(1.1, "grobwidth", textGrob("Scale", gp = gpar(fontface = "bold", ...))) + legend_width = unit(12, "bigpts") + longest_break * 1.2 + legend_width = max(title_length, legend_width) + } + else{ + legend_width = unit(0, "bigpts") + } + + # Set main title height + if(is.na(main)){ + main_height = unit(0, "npc") + } + else{ + main_height = unit(1.5, "grobheight", textGrob(main, gp = gpar(fontsize = 1.3 * fontsize, ...))) + } + + # Column annotations + if(!is.na(annotation[[1]][1])){ + # Column annotation height + annot_height = unit(ncol(annotation) * (8 + 2) + 2, "bigpts") + # Width of the correponding legend + longest_ann = which.max(nchar(as.matrix(annotation))) + annot_legend_width = unit(1.2, "grobwidth", textGrob(as.matrix(annotation)[longest_ann], gp = gpar(...))) + unit(12, "bigpts") + if(!annotation_legend){ + annot_legend_width = unit(0, "npc") + } + } + else{ + annot_height = unit(0, "bigpts") + annot_legend_width = unit(0, "bigpts") + } + + # Tree height + treeheight_col = unit(treeheight_col, "bigpts") + unit(5, "bigpts") + treeheight_row = unit(treeheight_row, "bigpts") + unit(5, "bigpts") + + # Set cell sizes + if(is.na(cellwidth)){ + matwidth = unit(1, "npc") - rown_width - legend_width - treeheight_row - annot_legend_width + } + else{ + matwidth = unit(cellwidth * ncol, "bigpts") + } + + if(is.na(cellheight)){ + matheight = unit(1, "npc") - main_height - coln_height - treeheight_col - annot_height + } + else{ + matheight = unit(cellheight * nrow, "bigpts") + } + + + # Produce layout() + pushViewport(viewport(layout = grid.layout(nrow = 5, ncol = 5, widths = unit.c(treeheight_row, matwidth, rown_width, legend_width, annot_legend_width), heights = unit.c(main_height, treeheight_col, annot_height, matheight, coln_height)), gp = do.call(gpar, gp))) + + # Get cell dimensions + pushViewport(vplayout(4, 2)) + cellwidth = convertWidth(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / ncol + cellheight = convertHeight(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / nrow + upViewport() + + # Return minimal cell dimension in bigpts to decide if borders are drawn + mindim = min(cellwidth, cellheight) + return(mindim) +} + +draw_dendrogram = function(hc, horizontal = T){ + h = hc$height / max(hc$height) / 1.05 + m = hc$merge + o = hc$order + n = length(o) + + m[m > 0] = n + m[m > 0] + m[m < 0] = abs(m[m < 0]) + + dist = matrix(0, nrow = 2 * n - 1, ncol = 2, dimnames = list(NULL, c("x", "y"))) + dist[1:n, 1] = 1 / n / 2 + (1 / n) * (match(1:n, o) - 1) + + for(i in 1:nrow(m)){ + dist[n + i, 1] = (dist[m[i, 1], 1] + dist[m[i, 2], 1]) / 2 + dist[n + i, 2] = h[i] + } + + draw_connection = function(x1, x2, y1, y2, y){ + grid.lines(x = c(x1, x1), y = c(y1, y)) + grid.lines(x = c(x2, x2), y = c(y2, y)) + grid.lines(x = c(x1, x2), y = c(y, y)) + } + + if(horizontal){ + for(i in 1:nrow(m)){ + draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i]) + } + } + + else{ + gr = rectGrob() + pushViewport(viewport(height = unit(1, "grobwidth", gr), width = unit(1, "grobheight", gr), angle = 90)) + dist[, 1] = 1 - dist[, 1] + for(i in 1:nrow(m)){ + draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i]) + } + upViewport() + } +} + +draw_matrix = function(matrix, border_color, border_width, fmat, fontsize_number){ + n = nrow(matrix) + m = ncol(matrix) + x = (1:m)/m - 1/2/m + y = 1 - ((1:n)/n - 1/2/n) + for(i in 1:m){ + grid.rect(x = x[i], y = y[1:n], width = 1/m, height = 1/n, gp = gpar(fill = matrix[,i], col = border_color, lwd = border_width)) + if(attr(fmat, "draw")){ + grid.text(x = x[i], y = y[1:n], label = fmat[, i], gp = gpar(col = "grey30", fontsize = fontsize_number)) + } + } +} + +draw_colnames = function(coln, ...){ + m = length(coln) + x = (1:m)/m - 1/2/m + grid.text(coln, x = x, y = unit(0.96, "npc"), just="right", rot = 90, gp = gpar(...)) +} + +draw_rownames = function(rown, ...){ + n = length(rown) + y = 1 - ((1:n)/n - 1/2/n) + grid.text(rown, x = unit(0.04, "npc"), y = y, vjust = 0.5, hjust = 0, gp = gpar(...)) +} + +draw_legend = function(color, breaks, legend, ...){ + height = min(unit(1, "npc"), unit(150, "bigpts")) + pushViewport(viewport(x = 0, y = unit(1, "npc"), just = c(0, 1), height = height)) + legend_pos = (legend - min(breaks)) / (max(breaks) - min(breaks)) + breaks = (breaks - min(breaks)) / (max(breaks) - min(breaks)) + h = breaks[-1] - breaks[-length(breaks)] + grid.rect(x = 0, y = breaks[-length(breaks)], width = unit(10, "bigpts"), height = h, hjust = 0, vjust = 0, gp = gpar(fill = color, col = "#FFFFFF00")) + grid.text(names(legend), x = unit(12, "bigpts"), y = legend_pos, hjust = 0, gp = gpar(...)) + upViewport() +} + +convert_annotations = function(annotation, annotation_colors){ + new = annotation + for(i in 1:ncol(annotation)){ + a = annotation[, i] + b = annotation_colors[[colnames(annotation)[i]]] + if(is.character(a) | is.factor(a)){ + a = as.character(a) + if(length(setdiff(a, names(b))) > 0){ + stop(sprintf("Factor levels on variable %s do not match with annotation_colors", colnames(annotation)[i])) + } + new[, i] = b[a] + } + else{ + a = cut(a, breaks = 100) + new[, i] = colorRampPalette(b)(100)[a] + } + } + return(as.matrix(new)) +} + +draw_annotations = function(converted_annotations, border_color, border_width){ + n = ncol(converted_annotations) + m = nrow(converted_annotations) + x = (1:m)/m - 1/2/m + y = cumsum(rep(8, n)) - 4 + cumsum(rep(2, n)) + for(i in 1:m){ + grid.rect(x = x[i], unit(y[1:n], "bigpts"), width = 1/m, height = unit(8, "bigpts"), gp = gpar(fill = converted_annotations[i, ], col = border_color, lwd = border_width)) + } +} + +draw_annotation_legend = function(annotation, annotation_colors, border_color, border_width, ...){ + y = unit(1, "npc") + text_height = unit(1, "grobheight", textGrob("FGH", gp = gpar(...))) + for(i in names(annotation_colors)){ + grid.text(i, x = 0, y = y, vjust = 1, hjust = 0, gp = gpar(fontface = "bold", ...)) + y = y - 1.5 * text_height + if(is.character(annotation[, i]) | is.factor(annotation[, i])){ + for(j in 1:length(annotation_colors[[i]])){ + grid.rect(x = unit(0, "npc"), y = y, hjust = 0, vjust = 1, height = text_height, width = text_height, gp = gpar(col = border_color, lwd = border_width, fill = annotation_colors[[i]][j])) + grid.text(names(annotation_colors[[i]])[j], x = text_height * 1.3, y = y, hjust = 0, vjust = 1, gp = gpar(...)) + y = y - 1.5 * text_height + } + } + else{ + yy = y - 4 * text_height + seq(0, 1, 0.02) * 4 * text_height + h = 4 * text_height * 0.02 + grid.rect(x = unit(0, "npc"), y = yy, hjust = 0, vjust = 1, height = h, width = text_height, gp = gpar(col = "#FFFFFF00", fill = colorRampPalette(annotation_colors[[i]])(50))) + txt = rev(range(grid.pretty(range(annotation[, i], na.rm = TRUE)))) + yy = y - c(0, 3) * text_height + grid.text(txt, x = text_height * 1.3, y = yy, hjust = 0, vjust = 1, gp = gpar(...)) + y = y - 4.5 * text_height + } + y = y - 1.5 * text_height + } +} + +draw_main = function(text, ...){ + grid.text(text, gp = gpar(fontface = "bold", ...)) +} + +vplayout = function(x, y){ + return(viewport(layout.pos.row = x, layout.pos.col = y)) +} + +heatmap_motor = function(matrix, border_color, border_width, cellwidth, cellheight, tree_col, tree_row, treeheight_col, treeheight_row, filename, width, height, breaks, color, legend, annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row, fontsize_col, fmat, fontsize_number, ...){ + grid.newpage() + + # Set layout + mindim = lo(coln = colnames(matrix), rown = rownames(matrix), nrow = nrow(matrix), ncol = ncol(matrix), cellwidth = cellwidth, cellheight = cellheight, treeheight_col = treeheight_col, treeheight_row = treeheight_row, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, ...) + + if(!is.na(filename)){ + pushViewport(vplayout(1:5, 1:5)) + + if(is.na(height)){ + height = convertHeight(unit(0:1, "npc"), "inches", valueOnly = T)[2] + } + if(is.na(width)){ + width = convertWidth(unit(0:1, "npc"), "inches", valueOnly = T)[2] + } + + # Get file type + r = regexpr("\\.[a-zA-Z]*$", filename) + if(r == -1) stop("Improper filename") + ending = substr(filename, r + 1, r + attr(r, "match.length")) + + f = switch(ending, + pdf = function(x, ...) pdf(x, ...), + png = function(x, ...) png(x, units = "in", res = 300, ...), + jpeg = function(x, ...) jpeg(x, units = "in", res = 300, ...), + jpg = function(x, ...) jpeg(x, units = "in", res = 300, ...), + tiff = function(x, ...) tiff(x, units = "in", res = 300, compression = "lzw", ...), + bmp = function(x, ...) bmp(x, units = "in", res = 300, ...), + stop("File type should be: pdf, png, bmp, jpg, tiff") + ) + + # print(sprintf("height:%f width:%f", height, width)) + f(filename, height = height, width = width) + heatmap_motor(matrix, cellwidth = cellwidth, cellheight = cellheight, border_color = border_color, border_width = border_width, tree_col = tree_col, tree_row = tree_row, treeheight_col = treeheight_col, treeheight_row = treeheight_row, breaks = breaks, color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, filename = NA, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number, ...) + dev.off() + upViewport() + return() + } + + # Omit border color if cell size is too small + if(mindim < 3) border_color = NA + + # Draw title + if(!is.na(main)){ + pushViewport(vplayout(1, 2)) + draw_main(main, fontsize = 1.3 * fontsize, ...) + upViewport() + } + + # Draw tree for the columns + if(!is.na(tree_col[[1]][1]) & treeheight_col != 0){ + pushViewport(vplayout(2, 2)) + draw_dendrogram(tree_col, horizontal = T) + upViewport() + } + + # Draw tree for the rows + if(!is.na(tree_row[[1]][1]) & treeheight_row != 0){ + pushViewport(vplayout(4, 1)) + draw_dendrogram(tree_row, horizontal = F) + upViewport() + } + + # Draw matrix + pushViewport(vplayout(4, 2)) + draw_matrix(matrix, border_color, border_width, fmat, fontsize_number) + upViewport() + + # Draw colnames + if(length(colnames(matrix)) != 0){ + pushViewport(vplayout(5, 2)) + pars = list(colnames(matrix), fontsize = fontsize_col, ...) + do.call(draw_colnames, pars) + upViewport() + } + + # Draw rownames + if(length(rownames(matrix)) != 0){ + pushViewport(vplayout(4, 3)) + pars = list(rownames(matrix), fontsize = fontsize_row, ...) + do.call(draw_rownames, pars) + upViewport() + } + + # Draw annotation tracks + if(!is.na(annotation[[1]][1])){ + pushViewport(vplayout(3, 2)) + converted_annotation = convert_annotations(annotation, annotation_colors) + draw_annotations(converted_annotation, border_color, border_width) + upViewport() + } + + # Draw annotation legend + if(!is.na(annotation[[1]][1]) & annotation_legend){ + if(length(rownames(matrix)) != 0){ + pushViewport(vplayout(4:5, 5)) + } + else{ + pushViewport(vplayout(3:5, 5)) + } + draw_annotation_legend(annotation, annotation_colors, border_color, border_width, fontsize = fontsize, ...) + upViewport() + } + + # Draw legend + if(!is.na(legend[1])){ + length(colnames(matrix)) + if(length(rownames(matrix)) != 0){ + pushViewport(vplayout(4:5, 4)) + } + else{ + pushViewport(vplayout(3:5, 4)) + } + draw_legend(color, breaks, legend, fontsize = fontsize, ...) + upViewport() + } + + +} + +generate_breaks = function(x, n, center = F){ + if(center){ + m = max(abs(c(min(x, na.rm = T), max(x, na.rm = T)))) + res = seq(-m, m, length.out = n + 1) + } + else{ + res = seq(min(x, na.rm = T), max(x, na.rm = T), length.out = n + 1) + } + + return(res) +} + +scale_vec_colours = function(x, col = rainbow(10), breaks = NA){ + return(col[as.numeric(cut(x, breaks = breaks, include.lowest = T))]) +} + +scale_colours = function(mat, col = rainbow(10), breaks = NA){ + mat = as.matrix(mat) + return(matrix(scale_vec_colours(as.vector(mat), col = col, breaks = breaks), nrow(mat), ncol(mat), dimnames = list(rownames(mat), colnames(mat)))) +} + +cluster_mat = function(mat, distance, method){ + if(!(method %in% c("ward", "single", "complete", "average", "mcquitty", "median", "centroid"))){ + stop("clustering method has to one form the list: 'ward', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.") + } + if(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) & class(distance) != "dist"){ + print(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) | class(distance) != "dist") + stop("distance has to be a dissimilarity structure as produced by dist or one measure form the list: 'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'") + } + if(distance[1] == "correlation"){ + d = as.dist(1 - cor(t(mat))) + } + else{ + if(class(distance) == "dist"){ + d = distance + } + else{ + d = dist(mat, method = distance) + } + } + + return(hclust(d, method = method)) +} + +scale_rows = function(x){ + m = apply(x, 1, mean, na.rm = T) + s = apply(x, 1, sd, na.rm = T) + return((x - m) / s) +} + +scale_mat = function(mat, scale){ + if(!(scale %in% c("none", "row", "column"))){ + stop("scale argument shoud take values: 'none', 'row' or 'column'") + } + mat = switch(scale, none = mat, row = scale_rows(mat), column = t(scale_rows(t(mat)))) + return(mat) +} + +generate_annotation_colours = function(annotation, annotation_colors, drop){ + if(is.na(annotation_colors)[[1]][1]){ + annotation_colors = list() + } + count = 0 + for(i in 1:ncol(annotation)){ + if(is.character(annotation[, i]) | is.factor(annotation[, i])){ + if (is.factor(annotation[, i]) & !drop){ + count = count + length(levels(annotation[, i])) + } + else{ + count = count + length(unique(annotation[, i])) + } + } + } + + factor_colors = hsv((seq(0, 1, length.out = count + 1)[-1] + + 0.2)%%1, 0.7, 0.95) + + set.seed(3453) + + for(i in 1:ncol(annotation)){ + if(!(colnames(annotation)[i] %in% names(annotation_colors))){ + if(is.character(annotation[, i]) | is.factor(annotation[, i])){ + n = length(unique(annotation[, i])) + if (is.factor(annotation[, i]) & !drop){ + n = length(levels(annotation[, i])) + } + ind = sample(1:length(factor_colors), n) + annotation_colors[[colnames(annotation)[i]]] = factor_colors[ind] + l = levels(as.factor(annotation[, i])) + l = l[l %in% unique(annotation[, i])] + if (is.factor(annotation[, i]) & !drop){ + l = levels(annotation[, i]) + } + names(annotation_colors[[colnames(annotation)[i]]]) = l + factor_colors = factor_colors[-ind] + } + else{ + r = runif(1) + annotation_colors[[colnames(annotation)[i]]] = hsv(r, c(0.1, 1), 1) + } + } + } + return(annotation_colors) +} + +kmeans_pheatmap = function(mat, k = min(nrow(mat), 150), sd_limit = NA, ...){ + # Filter data + if(!is.na(sd_limit)){ + s = apply(mat, 1, sd) + mat = mat[s > sd_limit, ] + } + + # Cluster data + set.seed(1245678) + km = kmeans(mat, k, iter.max = 100) + mat2 = km$centers + + # Compose rownames + t = table(km$cluster) + rownames(mat2) = sprintf("cl%s_size_%d", names(t), t) + + # Draw heatmap + pheatmap(mat2, ...) +} + +#' A function to draw clustered heatmaps. +#' +#' A function to draw clustered heatmaps where one has better control over some graphical +#' parameters such as cell size, etc. +#' +#' The function also allows to aggregate the rows using kmeans clustering. This is +#' advisable if number of rows is so big that R cannot handle their hierarchical +#' clustering anymore, roughly more than 1000. Instead of showing all the rows +#' separately one can cluster the rows in advance and show only the cluster centers. +#' The number of clusters can be tuned with parameter kmeans_k. +#' +#' @param mat numeric matrix of the values to be plotted. +#' @param color vector of colors used in heatmap. +#' @param kmeans_k the number of kmeans clusters to make, if we want to agggregate the +#' rows before drawing heatmap. If NA then the rows are not aggregated. +#' @param breaks a sequence of numbers that covers the range of values in mat and is one +#' element longer than color vector. Used for mapping values to colors. Useful, if needed +#' to map certain values to certain colors, to certain values. If value is NA then the +#' breaks are calculated automatically. +#' @param border_color color of cell borders on heatmap, use NA if no border should be +#' drawn. +#' @param cellwidth individual cell width in points. If left as NA, then the values +#' depend on the size of plotting window. +#' @param cellheight individual cell height in points. If left as NA, +#' then the values depend on the size of plotting window. +#' @param scale character indicating if the values should be centered and scaled in +#' either the row direction or the column direction, or none. Corresponding values are +#' \code{"row"}, \code{"column"} and \code{"none"} +#' @param cluster_rows boolean values determining if rows should be clustered, +#' @param cluster_cols boolean values determining if columns should be clustered. +#' @param clustering_distance_rows distance measure used in clustering rows. Possible +#' values are \code{"correlation"} for Pearson correlation and all the distances +#' supported by \code{\link{dist}}, such as \code{"euclidean"}, etc. If the value is none +#' of the above it is assumed that a distance matrix is provided. +#' @param clustering_distance_cols distance measure used in clustering columns. Possible +#' values the same as for clustering_distance_rows. +#' @param clustering_method clustering method used. Accepts the same values as +#' \code{\link{hclust}}. +#' @param treeheight_row the height of a tree for rows, if these are clustered. +#' Default value 50 points. +#' @param treeheight_col the height of a tree for columns, if these are clustered. +#' Default value 50 points. +#' @param legend logical to determine if legend should be drawn or not. +#' @param legend_breaks vector of breakpoints for the legend. +#' @param legend_labels vector of labels for the \code{legend_breaks}. +#' @param annotation data frame that specifies the annotations shown on top of the +#' columns. Each row defines the features for a specific column. The columns in the data +#' and rows in the annotation are matched using corresponding row and column names. Note +#' that color schemes takes into account if variable is continuous or discrete. +#' @param annotation_colors list for specifying annotation track colors manually. It is +#' possible to define the colors for only some of the features. Check examples for +#' details. +#' @param annotation_legend boolean value showing if the legend for annotation tracks +#' should be drawn. +#' @param drop_levels logical to determine if unused levels are also shown in the legend +#' @param show_rownames boolean specifying if column names are be shown. +#' @param show_colnames boolean specifying if column names are be shown. +#' @param main the title of the plot +#' @param fontsize base fontsize for the plot +#' @param fontsize_row fontsize for rownames (Default: fontsize) +#' @param fontsize_col fontsize for colnames (Default: fontsize) +#' @param display_numbers logical determining if the numeric values are also printed to +#' the cells. +#' @param number_format format strings (C printf style) of the numbers shown in cells. +#' For example "\code{\%.2f}" shows 2 decimal places and "\code{\%.1e}" shows exponential +#' notation (see more in \code{\link{sprintf}}). +#' @param fontsize_number fontsize of the numbers displayed in cells +#' @param filename file path where to save the picture. Filetype is decided by +#' the extension in the path. Currently following formats are supported: png, pdf, tiff, +#' bmp, jpeg. Even if the plot does not fit into the plotting window, the file size is +#' calculated so that the plot would fit there, unless specified otherwise. +#' @param width manual option for determining the output file width in inches. +#' @param height manual option for determining the output file height in inches. +#' @param \dots graphical parameters for the text used in plot. Parameters passed to +#' \code{\link{grid.text}}, see \code{\link{gpar}}. +#' +#' @return +#' Invisibly a list of components +#' \itemize{ +#' \item \code{tree_row} the clustering of rows as \code{\link{hclust}} object +#' \item \code{tree_col} the clustering of columns as \code{\link{hclust}} object +#' \item \code{kmeans} the kmeans clustering of rows if parameter \code{kmeans_k} was +#' specified +#' } +#' +#' @author Raivo Kolde <rkolde@@gmail.com> +#' @examples +#' # Generate some data +#' test = matrix(rnorm(200), 20, 10) +#' test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3 +#' test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2 +#' test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4 +#' colnames(test) = paste("Test", 1:10, sep = "") +#' rownames(test) = paste("Gene", 1:20, sep = "") +#' +#' # Draw heatmaps +#' pheatmap(test) +#' pheatmap(test, kmeans_k = 2) +#' pheatmap(test, scale = "row", clustering_distance_rows = "correlation") +#' pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50)) +#' pheatmap(test, cluster_row = FALSE) +#' pheatmap(test, legend = FALSE) +#' pheatmap(test, display_numbers = TRUE) +#' pheatmap(test, display_numbers = TRUE, number_format = "%.1e") +#' pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0", +#' "1e-4", "1e-3", "1e-2", "1e-1", "1")) +#' pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap") +#' pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf") +#' +#' +#' # Generate column annotations +#' annotation = data.frame(Var1 = factor(1:10 %% 2 == 0, +#' labels = c("Class1", "Class2")), Var2 = 1:10) +#' annotation$Var1 = factor(annotation$Var1, levels = c("Class1", "Class2", "Class3")) +#' rownames(annotation) = paste("Test", 1:10, sep = "") +#' +#' pheatmap(test, annotation = annotation) +#' pheatmap(test, annotation = annotation, annotation_legend = FALSE) +#' pheatmap(test, annotation = annotation, annotation_legend = FALSE, drop_levels = FALSE) +#' +#' # Specify colors +#' Var1 = c("navy", "darkgreen") +#' names(Var1) = c("Class1", "Class2") +#' Var2 = c("lightgreen", "navy") +#' +#' ann_colors = list(Var1 = Var1, Var2 = Var2) +#' +#' pheatmap(test, annotation = annotation, annotation_colors = ann_colors, main = "Example") +#' +#' # Specifying clustering from distance matrix +#' drows = dist(test, method = "minkowski") +#' dcols = dist(t(test), method = "minkowski") +#' pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols) +#' +#' @export +pheatmap_j = function(mat, color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100), kmeans_k = NA, breaks = NA, border_color = "grey60", border_width = 1, cellwidth = NA, cellheight = NA, scale = "none", cluster_rows = TRUE, cluster_cols = TRUE, clustering_distance_rows = "euclidean", clustering_distance_cols = "euclidean", clustering_method = "complete", treeheight_row = ifelse(cluster_rows, 50, 0), treeheight_col = ifelse(cluster_cols, 50, 0), legend = TRUE, legend_breaks = NA, legend_labels = NA, annotation = NA, annotation_colors = NA, annotation_legend = TRUE, drop_levels = TRUE, show_rownames = T, show_colnames = T, main = NA, fontsize = 10, fontsize_row = fontsize, fontsize_col = fontsize, display_numbers = F, number_format = "%.2f", fontsize_number = 0.8 * fontsize, filename = NA, width = NA, height = NA, ...){ + + # Preprocess matrix + mat = as.matrix(mat) + if(scale != "none"){ + mat = scale_mat(mat, scale) + if(is.na(breaks)){ + breaks = generate_breaks(mat, length(color), center = T) + } + } + + + # Kmeans + if(!is.na(kmeans_k)){ + # Cluster data + km = kmeans(mat, kmeans_k, iter.max = 100) + mat = km$centers + + # Compose rownames + t = table(km$cluster) + rownames(mat) = sprintf("cl%s_size_%d", names(t), t) + } + else{ + km = NA + } + + # Do clustering + if(cluster_rows){ + tree_row = cluster_mat(mat, distance = clustering_distance_rows, method = clustering_method) + mat = mat[tree_row$order, , drop = FALSE] + } + else{ + tree_row = NA + treeheight_row = 0 + } + + if(cluster_cols){ + tree_col = cluster_mat(t(mat), distance = clustering_distance_cols, method = clustering_method) + mat = mat[, tree_col$order, drop = FALSE] + } + else{ + tree_col = NA + treeheight_col = 0 + } + + # Format numbers to be displayed in cells + if(display_numbers){ + fmat = matrix(sprintf(number_format, mat), nrow = nrow(mat), ncol = ncol(mat)) + attr(fmat, "draw") = TRUE + } + else{ + fmat = matrix(NA, nrow = nrow(mat), ncol = ncol(mat)) + attr(fmat, "draw") = FALSE + } + + + # Colors and scales + if(!is.na(legend_breaks[1]) & !is.na(legend_labels[1])){ + if(length(legend_breaks) != length(legend_labels)){ + stop("Lengths of legend_breaks and legend_labels must be the same") + } + } + + + if(is.na(breaks[1])){ + breaks = generate_breaks(as.vector(mat), length(color)) + } + if (legend & is.na(legend_breaks[1])) { + legend = grid.pretty(range(as.vector(breaks))) + names(legend) = legend + } + else if(legend & !is.na(legend_breaks[1])){ + legend = legend_breaks[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)] + + if(!is.na(legend_labels[1])){ + legend_labels = legend_labels[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)] + names(legend) = legend_labels + } + else{ + names(legend) = legend + } + } + else { + legend = NA + } + mat = scale_colours(mat, col = color, breaks = breaks) + + # Preparing annotation colors + if(!is.na(annotation[[1]][1])){ + annotation = annotation[colnames(mat), , drop = F] + annotation_colors = generate_annotation_colours(annotation, annotation_colors, drop = drop_levels) + } + + if(!show_rownames){ + rownames(mat) = NULL + } + + if(!show_colnames){ + colnames(mat) = NULL + } + + # Draw heatmap + heatmap_motor(mat, border_color = border_color, border_width = border_width, cellwidth = cellwidth, cellheight = cellheight, treeheight_col = treeheight_col, treeheight_row = treeheight_row, tree_col = tree_col, tree_row = tree_row, filename = filename, width = width, height = height, breaks = breaks, color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number, ...) + + invisible(list(tree_row = tree_row, tree_col = tree_col, kmeans = km)) +} + +