Mercurial > repos > bornea > network_attributes
comparison Calculate_attributes.R @ 1:e4a55256547a draft
Uploaded
author | bornea |
---|---|
date | Wed, 18 Oct 2017 15:23:06 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:c8a8a1e90a9d | 1:e4a55256547a |
---|---|
1 library(igraph) | |
2 library(dplyr) | |
3 library(ggplot2) | |
4 | |
5 NetworkAttributes <- function(edges,centrality = "eigenvector",community="fast.greedy") { | |
6 "This function takes in a SIF formatted dataframe and returns a node attribute dataframe." | |
7 "It performs community optimization and calculates a centrality metric." | |
8 nodes <- data.frame(V1 = unique(c(as.character(edges[,1]),as.character(edges[,2])))) | |
9 graph <- graph.data.frame(edges, directed = FALSE, vertices = nodes) | |
10 graph = simplify(graph) | |
11 if(community == "optimal"){V(graph)$comm <- membership(optimal.community(graph))} # computationally intensive | |
12 if(community == "fast.greedy"){V(graph)$comm <- membership(fastgreedy.community(graph))} # for larger datasets\ | |
13 if(community == "edge.betweenness"){V(graph)$comm <- membership(edge.betweenness.community(graph))} | |
14 if(community == "walk.trap"){V(graph)$comm <- membership(walktrap.community(graph))} | |
15 if(community == "spin.glass"){V(graph)$comm <- membership(spinglass.community(graph))} | |
16 if(community == "leading.eigenvector"){V(graph)$comm <- membership(leading.eigenvector.community(graph))} | |
17 if(community == "label.propagation"){V(graph)$comm <- membership(label.propagation.community(graph))} | |
18 if(community == "multilevel"){V(graph)$comm <- membership(multilevel.community(graph))} | |
19 | |
20 if(centrality == "closeness"){V(graph)$closeness <- centralization.closeness(graph)$res} | |
21 if(centrality == "betweenness"){V(graph)$betweenness <- centralization.betweenness(graph)$res} | |
22 if(centrality == "eigenvector"){V(graph)$eigen <- centralization.evcent(graph)$vector} | |
23 if(centrality == "PageRank"){V(graph)$page <- page_rank(graph)$vector} | |
24 | |
25 return(get.data.frame(graph, what = "vertices")) | |
26 } | |
27 #calculate_attributes(nodes,edgelist,centrality = "betweenness",community="fastgreedy") | |
28 args <- commandArgs(trailingOnly = TRUE) | |
29 edgelist <- read.table(file=as.character(args[1]), stringsAsFactors = FALSE,sep="\t",header=FALSE) | |
30 write.table(NetworkAttributes(edgelist,args[2],args[3]),"node_attr.txt",sep="\t",quote=FALSE,row.names=FALSE) |