Mercurial > repos > bornea > prohits_dotplot_generator
comparison Dotplot_Release/R_dotPlot_hc.R @ 3:bc752a05f16d draft
Uploaded
| author | bornea |
|---|---|
| date | Tue, 15 Mar 2016 15:25:15 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 2:cfe2edb1c5d8 | 3:bc752a05f16d |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 | |
| 3 args <- commandArgs(trailingOnly = TRUE) | |
| 4 | |
| 5 pheatmapj_loc <- paste(args[6],"pheatmap_j.R",sep="/") | |
| 6 heatmap2j_loc <- paste(args[6],"heatmap_2j.R",sep="/") | |
| 7 | |
| 8 library('latticeExtra') | |
| 9 library('RColorBrewer') | |
| 10 library('grid') | |
| 11 library(reshape2) | |
| 12 library('gplots') | |
| 13 library('gtools') | |
| 14 source(pheatmapj_loc) | |
| 15 source(heatmap2j_loc) | |
| 16 | |
| 17 data.file <- read.table("SC_data.txt", sep="\t", header=TRUE, row.names=1) ### import spectral count data | |
| 18 data.file2 <- read.table("FDR_data.txt", sep="\t", header=TRUE, row.names=1) ### import FDR count data | |
| 19 | |
| 20 #setting parameters | |
| 21 | |
| 22 Sfirst=as.numeric(args[1]) #first FDR cutoff | |
| 23 Ssecond=as.numeric(args[2]) #second FDR cutoff | |
| 24 maxp=as.integer(args[3]) #maximum value for a spectral count | |
| 25 methd <- args[4] | |
| 26 dist_methd <- args[5] | |
| 27 | |
| 28 #determine bait and prey ordering | |
| 29 | |
| 30 dist_bait <- dist(as.matrix(t(data.file)), method= dist_methd) # "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski" | |
| 31 dist_prey <- dist(as.matrix(data.file), method= dist_methd) | |
| 32 | |
| 33 if(methd == "ward"){ | |
| 34 dist_bait <- dist_bait^2 #comment out this line and the next if not using Ward's method of clustering | |
| 35 dist_prey <- dist_prey^2 | |
| 36 } | |
| 37 | |
| 38 hc_bait <- hclust(dist_bait, method = methd) # method = "average", "single", "complete", "ward", "mcquitty", "median" or "centroid" | |
| 39 hc_prey <- hclust(dist_prey, method = methd) | |
| 40 | |
| 41 data.file = data.file[hc_prey$order, , drop = FALSE] | |
| 42 data.file = data.file[, hc_bait$order, drop = FALSE] | |
| 43 data.file2 = data.file2[hc_prey$order, , drop = FALSE] | |
| 44 data.file2 = data.file2[, hc_bait$order, drop = FALSE] | |
| 45 | |
| 46 x_ord=factor(row.names(data.file), levels=row.names(data.file)) | |
| 47 y_ord=factor(names(data.file[1,]), levels=names(data.file[1,])) | |
| 48 | |
| 49 df<-data.frame(y=rep(y_ord, nrow(data.file)) | |
| 50 ,x=rep(x_ord, each=ncol(data.file)) | |
| 51 ,z1=as.vector(t(data.file)) # Circle color | |
| 52 ,z2=as.vector(t(data.file/apply(data.file,1,max))) # Circle size | |
| 53 ,z3=as.vector(t(data.file2)) # FDR | |
| 54 ) | |
| 55 | |
| 56 df$z1[df$z1>maxp] <- maxp #maximum value for spectral count | |
| 57 df$z2[df$z2==0] <- NA | |
| 58 df$z3[df$z3>Ssecond] <- 0.05*maxp | |
| 59 df$z3[df$z3<=Ssecond & df$z3>Sfirst] <- 0.5*maxp | |
| 60 df$z3[df$z3<=Sfirst] <- 1*maxp | |
| 61 df$z4 <- df$z1 | |
| 62 df$z4[df$z4==0] <- 0 | |
| 63 df$z4[df$z4>0] <- 2.5 | |
| 64 | |
| 65 # The labeling for the colorkey | |
| 66 | |
| 67 labelat = c(0, maxp) | |
| 68 labeltext = c(0, maxp) | |
| 69 | |
| 70 # color scheme to use | |
| 71 | |
| 72 nmb.colors<-maxp | |
| 73 z.colors<-grey(rev(seq(0,0.9,0.9/nmb.colors))) #grayscale color scale | |
| 74 | |
| 75 #plot dotplot | |
| 76 | |
| 77 pl <- levelplot(z1~x*y, data=df | |
| 78 ,col.regions =z.colors #terrain.colors(100) | |
| 79 ,scales = list(x = list(rot = 90), y=list(cex=0.8), tck=0) # rotates X,Y labels and changes scale | |
| 80 ,colorkey = FALSE | |
| 81 #,colorkey = list(space="bottom", width=1.5, height=0.3, labels=list(at = labelat, labels = labeltext)) #put colorkey at top with my labeling scheme | |
| 82 ,xlab="Prey", ylab="Bait" | |
| 83 ,panel=function(x,y,z,...,col.regions){ | |
| 84 print(x) | |
| 85 z.c<-df$z1[ (df$x %in% as.character(x)) & (df$y %in% y)] | |
| 86 z.2<-df$z2[ (df$x %in% as.character(x)) & (df$y %in% y)] | |
| 87 z.3<-df$z3 | |
| 88 z.4<-df$z4 | |
| 89 panel.xyplot(x,y | |
| 90 ,as.table=TRUE | |
| 91 ,pch=21 # point type to use (circles in this case) | |
| 92 ,cex=((z.2-min(z.2,na.rm=TRUE))/(max(z.2,na.rm=TRUE)-min(z.2,na.rm=TRUE)))*3 #circle size | |
| 93 ,fill=z.colors[floor((z.c-min(z.c,na.rm=TRUE))*nmb.colors/(max(z.c,na.rm=TRUE)-min(z.c,na.rm=TRUE)))+1] # circle colors | |
| 94 ,col=z.colors[1+z.3] # border colors | |
| 95 ,lex=z.4 #border thickness | |
| 96 ) | |
| 97 } | |
| 98 #,main="Fold change" # graph main title | |
| 99 ) | |
| 100 if(ncol(data.file) > 4) ht=3.5+(0.36*((ncol(data.file)-1)-4)) else ht=3.5 | |
| 101 if(nrow(data.file) > 20) wd=8.25+(0.29*(nrow(data.file) -20)) else wd=5.7+(0.28*(nrow(data.file) -10)) | |
| 102 pdf("dotplot.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2) | |
| 103 print(pl) | |
| 104 dev.off() | |
| 105 | |
| 106 #plot bait vs prey heatmap | |
| 107 | |
| 108 heat_df <- acast(df, y~x, value.var="z1") | |
| 109 heat_df <- apply(heat_df, 2, rev) | |
| 110 | |
| 111 if(ncol(data.file) > 4) ht=3.5+(0.1*((ncol(data.file)-1)-4)) else ht=3.5 | |
| 112 if(nrow(data.file) > 20) wd=8.25+(0.1*(nrow(data.file)-20)) else wd=5+(0.1*(nrow(data.file)-10)) | |
| 113 pdf("heatmap_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2) | |
| 114 pheatmap_j(heat_df, scale="none", border_color="black", border_width = 0.1, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100)) | |
| 115 dev.off() | |
| 116 | |
| 117 pdf("heatmap_no_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2) | |
| 118 pheatmap_j(heat_df, scale="none", border_color=NA, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100)) | |
| 119 dev.off() | |
| 120 | |
| 121 #plot bait vs bait heatmap using dist matrix | |
| 122 dist_bait <- dist_bait/max(dist_bait) | |
| 123 pdf("bait2bait.pdf", onefile = FALSE, paper = "special") | |
| 124 heatmap_2j(as.matrix(dist_bait), trace="none", scale="none", density.info="none", col=rev(colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100)), xMin=0, xMax=1, margins=c(1.5*max(nchar(rownames(as.matrix(dist_bait)))),1.5*max(nchar(colnames(as.matrix(dist_bait)))))) | |
| 125 dev.off() |
