Mercurial > repos > chemteam > biomd_neqgamma
view NEQGamma.py @ 0:4f3222cb5cf6 draft
"planemo upload for repository https://github.com/galaxycomputationalchemistry/galaxy-tools-compchem/ commit 79589d149a8ff2791d4f71d28b155011672db827"
author | chemteam |
---|---|
date | Fri, 11 Sep 2020 21:54:45 +0000 |
parents | |
children | afcb925def69 |
line wrap: on
line source
#!/usr/bin/env python # coding: utf-8 # This script is a modified version of a script written # by Steffen Wolf under the GPL v3.0. # The original version can be accessed at # https://github.com/moldyn/dcTMD/blob/master/NEQGamma.py import argparse import json import sys import numpy as np import pandas as pd import scipy import scipy.integrate from scipy.ndimage.filters import gaussian_filter def get_file_names(list_file): with open(list_file) as f: return [line for line in f.read().split('\n') if line] def NEQGamma(file_names, output, output_frict, vel, T, av, sigma): N = len(file_names) RT = 0.0083144598 * T sys.stdout.write("reading data...\n") # read in initial data to get length of necessary array test_file = pd.read_csv(file_names[0], delim_whitespace=True, header=None, skiprows=17, dtype=float) length_data = len(test_file[0].values) full_force_set = np.zeros((N, length_data)) x = np.zeros(length_data) t = np.zeros(length_data) t = test_file[0].values x = test_file[0].values * vel # read in data for i in range(0, N): current_file_name = file_names[i] sys.stdout.write("reading file {}\n".format(current_file_name)) input_file_data = pd.read_csv(current_file_name, delim_whitespace=True, header=None, skiprows=17, dtype=float) full_force_set[i, :] = input_file_data[1].values # preprocessing # * force average: calculate $\left< f_c (t)\right>_N$. # **Important:** this is an ensemble average over the trajectory ensemble # $N$, not the time average over $t$ av_force = np.zeros(length_data) av_forceintegral = np.zeros(length_data) for i in range(length_data): av_force[i] = np.mean(full_force_set[:, i]) av_forceintegral[1:] = scipy.integrate.cumtrapz(av_force, x) # calculate $\delta f_c(t) = f_c(t) - \left< f_c (t) \right>_N$ for all $t$ sys.stdout.write("calculating fluctuations...\n") delta_force_set = np.zeros((N, length_data)) for i in range(length_data): delta_force_set[:, i] = full_force_set[:, i] - av_force[i] # evaluation # * optimized algorithm for numerical evaluation: # * integrate: $\int_0^t dt' \delta f_c(t')$ for all $t'$ # * multiply by $\delta f_c(t)$ to yield # $\int_0^t dt'\delta f_c(t) \delta f_c(t')$ for $t$ # with all $t' \leq t$ each # * then calculate the ensemble average # $\left< \int_0^t dt' \delta f_c(t) \delta f_c(t') \right>$ int_delta_force_set = np.zeros((N, length_data)) for n in range(N): int_delta_force_set[n, 1:] = scipy.integrate.cumtrapz( delta_force_set[n, :], t) sys.stdout.write("averaging and integrating...\n") intcorr = np.zeros((N, length_data)) for n in range(N): for i in range(length_data): intcorr[n, i] = delta_force_set[n, i] * int_delta_force_set[n, i] if i % 1000 == 0: sys.stdout.write("Trajectory {:2d} {:3.1f} % done\r".format( n + 1, (i / length_data) * 100)) # shape of $\int_0^t dt' \delta f_c(t) \delta f_c(t')$: sys.stdout.write("final average...\n") av_intcorr = np.zeros(length_data) for i in range(length_data): av_intcorr[i] = np.mean(intcorr[:, i]) / RT # autocorrelation function evaluation: # * calculate $\left< \delta f_c(t) \delta f_c(t') \right>$ # for the last $t$ corr_set = np.zeros((N, length_data)) autocorr_set = np.zeros(length_data) sys.stdout.write("calculating and processing ACF...\n") for n in range(N): for i in range(length_data): corr_set[n, i] = delta_force_set[ n, i] * delta_force_set[n, length_data - 1] for i in range(length_data): autocorr_set[i] = np.mean(corr_set[:, i]) # * Gauss filter: sys.stdout.write("applying Gauss filter...\n") blurr = sigma blurred = np.zeros(length_data) blurred = gaussian_filter(av_intcorr, sigma=blurr) # * sliding window average: sys.stdout.write("applying sliding window average...\n") window = av runn_av = np.zeros(length_data) runn_av = np.convolve(av_intcorr, np.ones((window,)) / window, mode='same') # * $W_{diss}$ from integration: wdiss = np.zeros(length_data) wdiss[1:] = scipy.integrate.cumtrapz(av_intcorr, x) * vel sys.stdout.write("writing output...\n") dist = open(output, "w") frict = open(output_frict, "w") dist.write( "#x force_integral frict_coeff wdiss corrected_force_integral\n") for i in range(length_data): dist.write("{:15.8f} {:20.8f} {:20.8f} {:20.8f} {:20.8f}\n".format( x[i], av_forceintegral[i], av_intcorr[i], wdiss[i], av_forceintegral[i] - wdiss[i])) frict.write("""#x ACF frict_coeff """ """gauss_filtered_frict_coeff av_window_frict_coeff\n""") for i in range(length_data): frict.write("{:15.8f} {:20.8f} {:20.8f} {:20.8f} {:20.8f}\n".format( x[i], autocorr_set[i], av_intcorr[i], blurred[i], runn_av[i])) dist.close() frict.close() sys.stdout.write("Done!\n") def main(): parser = argparse.ArgumentParser(description="""dcTMD friciton correction (please cite: Wolf, S., Stock, G. Targeted Molecular Dynamics Calculations of Free Energy Profiles Using a Nonequilibrium Friction Correction. J. Chem. Theory Comput. 2018, 14(12), 6175-6182, DOI: 10.1021/acs.jctc.8b00835). Integrates a constraint force file via trapezoid rule, calculates the NEQ memory friction kernel and friction factors, and performs a friction correction. First column: reaction coordinate in nm calculated via t * vel. Second column: force integral, i.e. the work profile. Third column: friction factors. Fourth column: trapezoid integral (final value) of friction work along reaction coordinate. Fourth column: friction corrected work profile. ATTENTION: Use with python3 or higher!""") parser.add_argument('-i', metavar='<xvg force file>', type=str, help="""List of xvg constraint force files prefix as given by Gromacs mdrun -pf option before running number.""") parser.add_argument('-o', metavar='<combined results>', type=str, help="""file to write x, dG(x), friction coefficeint by integration (time resolved), and the friction-corrected dG(x).""") parser.add_argument('-ofrict', metavar='<combined friction results>', type=str, help="""file to write x, ACF, friction coefficeint by integration (time resolved), gauss filtered friction coefficient, and slide window averaged friction.""") parser.add_argument('-vel', metavar='<pull velocity>', type=float, help="""pull velocity in nm/ps for converting simulation time t into distance x""") parser.add_argument('-T', metavar='<temperature>', type=float, help='temperature in K') parser.add_argument('-av', metavar='<average window>', type=int, help="""size of averaging window for displaying Gamma(x) (recommended: 4 to 20 per 100 data points)""") parser.add_argument('-sigma', metavar='<gauss blurr>', type=int, help="""sigma value for Gauss filter for displaying Gamma(x) (recommended: 4 per 100 data points)""") parser.add_argument('-json', metavar='<json>', type=str, help='JSON file defining cluster membership') args = parser.parse_args() file_names = get_file_names(args.i) if args.json: with open(args.json) as f: j = json.load(f) file_names_dct = {n: [file_names[int(m)] for m in j[n]] for n in j} for cluster in file_names_dct: NEQGamma(file_names_dct[cluster], 'cluster{}_{}'.format(cluster, args.o), 'cluster{}_{}'.format(cluster, args.ofrict), args.vel, args.T, args.av, args.sigma) else: NEQGamma(file_names, args.o, args.ofrict, args.vel, args.T, args.av, args.sigma) if __name__ == "__main__": main()