5
|
1 import os;
|
|
2 import re;
|
|
3 import csv;
|
|
4 import string;
|
|
5 import sys;
|
|
6 import math;
|
|
7 import numpy as np;
|
|
8 import matplotlib;
|
|
9 matplotlib.use('Agg');
|
|
10 from pylab import *;
|
|
11
|
|
12 def extractGffFeatures(gffString):
|
|
13 # GFF v3
|
|
14 # 1. seqname - Must be a chromosome or scaffold.
|
|
15 # 2. source - The program that generated this feature.
|
|
16 # 3. feature - The name of this type of feature. Some examples of standard feature types are "CDS", "start_codon", "stop_codon", and "exon".
|
|
17 # 4. start - The starting position of the feature in the sequence. The first base is numbered 1.
|
|
18 # 5. end - The ending position of the feature (inclusive).
|
|
19 # 6. score - A score between 0 and 1000. If there is no score value, enter ".".
|
|
20 # 7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
|
|
21 # 8. frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
|
|
22 # 9. group - All lines with the same group are linked together into a single item.
|
|
23
|
|
24 res = [];
|
|
25
|
|
26 if len(gffString) > 1: # check for empty line (i.e. row in GFF file only contains \n)
|
|
27 try:
|
|
28 gffSeqName, gffSource, gffFeature, gffStart, gffEnd, gffScr, gffStrand, gffFrame, gffGroup = gffString.split('\t');
|
|
29 except:
|
|
30 return []; # exit, since we don't have 9 features
|
|
31
|
|
32 # handle the gffSeqName
|
|
33 try:
|
|
34 chrNo = int(re.findall(r'[0-9]+', gffSeqName)[0]);
|
|
35 except:
|
|
36 return [];
|
|
37
|
|
38 # handle gffStart
|
|
39 try:
|
|
40 probeStart = int(gffStart);
|
|
41 except ValueError:
|
|
42 return []; # exit, invalid gffStart
|
|
43
|
|
44 # handle gffEnd
|
|
45 try:
|
|
46 probeEnd = int(gffEnd);
|
|
47 except ValueError:
|
|
48 return []; # exit, invalid gffEnd
|
|
49
|
|
50 # handle gffScr
|
|
51 try:
|
|
52 probeScr = float(gffScr);
|
|
53 except ValueError:
|
|
54 return []; # exit, invalid gffScr
|
|
55
|
|
56 # if the input string was well-formed, return the extracted features
|
|
57 res = [chrNo, probeStart, probeEnd, probeScr];
|
|
58 return res; # return feature set (if any was found in this record)
|
|
59
|
|
60 # Define Constants
|
|
61 tickPlotAdj = 0.5; # adjust tick marks on x-axis such that they are exactly at the bin boundary (and not in the bin center)
|
|
62
|
|
63 # Initialize Variables
|
|
64 feaNames = [];
|
|
65 feaChrNoList = [];
|
|
66 feaStrandList = [];
|
|
67 feaStartList = [];
|
|
68 feaEndList = [];
|
|
69 feaAttribList = [];
|
|
70 classBoundaryIdxs = [];
|
|
71
|
|
72 gffChrNoList = [];
|
|
73 gffProbeCenterList = [];
|
|
74 gffMatScrList = [];
|
|
75
|
|
76 # get command line arguments
|
|
77 gffFileName = sys.argv[1];
|
|
78 feaFileName = sys.argv[2];
|
|
79 outFileFormat = sys.argv[3];
|
|
80 stepWidth = int(sys.argv[4]);
|
|
81 classBoundaryStr = sys.argv[5];
|
|
82 upStreamStretch = int(sys.argv[6]); # in bp
|
|
83 maxX = int(sys.argv[7]); # in bp, if -1 maxX <= max(feature length), see below
|
|
84 tickSpacing = int(sys.argv[8]); # in bp
|
|
85 plotTitle = sys.argv[9];
|
|
86 outFileName = sys.argv[10];
|
|
87
|
|
88 # Extract class boundaries
|
|
89 classBoundaries = map(string.atoi, re.findall(r'\b\d+\b',classBoundaryStr));
|
|
90
|
|
91 # Read transcript information
|
|
92 feaFileReader = csv.reader(open(feaFileName, 'rb'), delimiter = '\t');
|
|
93 for row in feaFileReader:
|
|
94 feaName, feaChrNo, feaStrand, feaStart, feaEnd, feaAttrib = row;
|
|
95 feaNames.append(feaName);
|
|
96 feaChrNoList.append(int(feaChrNo));
|
|
97 feaStrandList.append(int(feaStrand));
|
|
98 feaStartList.append(int(feaStart));
|
|
99 feaEndList.append(int(feaEnd));
|
|
100 feaAttribList.append(float(feaAttrib));
|
|
101
|
|
102 # Read enrichment scores
|
|
103 gffFileHandle = open(gffFileName, "rU");
|
|
104 for row in gffFileHandle:
|
|
105 cache = extractGffFeatures(row);
|
|
106 if len(cache) == 4: # if curr row wasn't well-formed, skip row
|
|
107 chrNo, probeStart, probeEnd, probeScr = cache;
|
|
108 gffChrNoList.append(chrNo);
|
|
109 gffProbeCenterList.append(int(float(probeEnd - probeStart)/2.0 + probeStart)); # calc the center pos of each probe
|
|
110 gffMatScrList.append(probeScr);
|
|
111
|
|
112 # convert numerical lists into vectors
|
|
113 feaChrNos = np.array(feaChrNoList);
|
|
114 feaStrands = np.array(feaStrandList);
|
|
115 feaStarts = np.array(feaStartList);
|
|
116 feaEnds = np.array(feaEndList);
|
|
117 feaAttribs = np.array(feaAttribList);
|
|
118
|
|
119 gfChrNos = np.array(gffChrNoList);
|
|
120 gfProbeLocs = np.array(gffProbeCenterList);
|
|
121 gfMatScrs = np.array(gffMatScrList);
|
|
122
|
|
123 # preallocate the results array, bins plus 2 extra cols for feature length and transfreq (or other freature characteristic) plus 1 col for sorting
|
|
124 avgFeatureMatScrs = np.empty((len(feaStarts),\
|
|
125 (int(math.ceil(float(max(feaEnds - feaStarts))/float(stepWidth)) + upStreamStretch/stepWidth + 3))),\
|
|
126 );
|
|
127 avgFeatureMatScrs[:] = np.NAN;
|
|
128
|
|
129 featureCounter = 0;
|
|
130
|
|
131 for chr in range(min(feaChrNos),max(feaChrNos) + 1):
|
|
132 #get all rows from the feature file that contain information about the i'th chromosome
|
|
133 currChrIdxs = (feaChrNos == chr);
|
|
134 currStrands = feaStrands[currChrIdxs];
|
|
135 currStarts = feaStarts[currChrIdxs];
|
|
136 currEnds = feaEnds[currChrIdxs];
|
|
137 currAttribs = feaAttribs[currChrIdxs];
|
|
138
|
|
139 #get all rows from ChIP-* data sets
|
|
140 currGfChrIdxs = (gfChrNos == chr);
|
|
141 currGfProbeLocs = gfProbeLocs[currGfChrIdxs];
|
|
142 currGfScrs = gfMatScrs[currGfChrIdxs];
|
|
143
|
|
144 # iterate over all features of the current chromosome
|
|
145 for j in range(0,len(currStarts)):
|
|
146 feaStrand = currStrands[j];
|
|
147 feaStart = currStarts[j];
|
|
148 feaEnd = currEnds[j];
|
|
149 feaAttrib = currAttribs[j];
|
|
150
|
|
151 #calc the corresponding probe positions for the feature start
|
|
152 if feaStrand == 1: # +strand
|
|
153 refFeaSt = 0;
|
|
154 while feaStart >= currGfProbeLocs[refFeaSt]:
|
|
155 refFeaSt += 1;
|
|
156 else: # -strand
|
|
157 refFeaSt = 0;
|
|
158 while feaEnd >= currGfProbeLocs[refFeaSt]:
|
|
159 refFeaSt += 1;
|
|
160 #now refFeaSt points to the correct probe according to strand orientation
|
|
161
|
|
162 #calc the avg probe scores per bin
|
|
163 if feaStrand == 1:
|
|
164 feaChunkStart = feaStart; # bp level pointer
|
|
165 refChunkStart = refFeaSt; # probe level pointer
|
|
166 refChunkEnd = refFeaSt; # probe level pointer
|
|
167
|
|
168 # determine values for the upstream bins
|
|
169 for k in range(1,upStreamStretch/stepWidth + 1):
|
|
170 feaChunkEnd = feaStart - k * stepWidth; # bp level pointer
|
|
171
|
|
172 # find the correct ref for the current feaChunkEnd; catch potential IndexOutOfBoundEx when upstream region too close to chr boundary
|
|
173 try:
|
|
174 while feaChunkEnd <= currGfProbeLocs[refChunkEnd]:
|
|
175 refChunkEnd -= 1;
|
|
176 except:
|
|
177 pass; # don't handle the exception further
|
|
178
|
|
179 #calc probe mean
|
|
180 avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkEnd:refChunkStart + 1]);
|
|
181
|
|
182 #adjust pointers
|
|
183 refChunkStart = refChunkEnd;
|
|
184
|
|
185 # determine values for bins in feature body
|
|
186 for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)):
|
|
187 feaChunkEnd = feaStart + k*stepWidth; # bp level pointer
|
|
188
|
|
189 try:
|
|
190 while feaChunkEnd >= currGfProbeLocs[refChunkEnd]:
|
|
191 refChunkEnd += 1;
|
|
192 except:
|
|
193 pass; # don't handle the exception further
|
|
194
|
|
195 # calc probe mean
|
|
196 avgFeatureMatScrs[featureCounter, k - 1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkStart:refChunkEnd + 1]);
|
|
197
|
|
198 # adjust chunk pointers
|
|
199 refChunkStart = refChunkEnd;
|
|
200
|
|
201 # write feature length and attrib in last cols of the array
|
|
202 avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart;
|
|
203 avgFeatureMatScrs[featureCounter, -2] = feaAttrib;
|
|
204 featureCounter += 1;
|
|
205 else: # -1 strand
|
|
206 feaChunkStart = feaEnd; # bp level pointer
|
|
207 refChunkStart = refFeaSt; # probe level pointer
|
|
208 refChunkEnd = refFeaSt; # probe level pointer
|
|
209
|
|
210 # determine values for the upStream region bins
|
|
211 for k in range(1,upStreamStretch/stepWidth + 1):
|
|
212 feaChunkEnd = feaEnd + k*stepWidth; # bp level pointer
|
|
213
|
|
214 # find the ref for the current feaChunkEnd, catch potential IndexOutOfBoundEx when upstream region too close to chr boundary
|
|
215 try:
|
|
216 while feaChunkEnd >= currGfProbeLocs[refChunkEnd]:
|
|
217 refChunkEnd += 1;
|
|
218 except:
|
|
219 pass;
|
|
220
|
|
221 # calc probe mean
|
|
222 avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkStart:refChunkEnd+1]);
|
|
223
|
|
224 # adjust chunk pointers
|
|
225 refChunkStart = refChunkEnd;
|
|
226
|
|
227 # determine values for bins in feature body
|
|
228 for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)):
|
|
229 feaChunkEnd = feaEnd - k*stepWidth; # bp level pointer
|
|
230
|
|
231 try:
|
|
232 while feaChunkEnd <= currGfProbeLocs[refChunkEnd]:
|
|
233 refChunkEnd -= 1;
|
|
234 except:
|
|
235 pass;
|
|
236
|
|
237 # calc probe mean
|
|
238 avgFeatureMatScrs[featureCounter, k-1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkEnd:refChunkStart+1]);
|
|
239
|
|
240 # adjust chunk pointers
|
|
241 refChunkStart = refChunkEnd;
|
|
242
|
|
243 # write feature length and attrib in last cols of the array
|
|
244 avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart;
|
|
245 avgFeatureMatScrs[featureCounter, -2] = feaAttrib;
|
|
246 featureCounter += 1;
|
|
247
|
|
248 # determine idxs of class boundaries and write class value in respective cells
|
|
249 for c in range(len(classBoundaries)-1,-1,-1): # reverse iterate through the boundaries list
|
|
250 idxs = np.nonzero(avgFeatureMatScrs[:,-2] <= classBoundaries[c])[0];
|
|
251 avgFeatureMatScrs[idxs, -3] = c;
|
|
252
|
|
253 # assign names and data format to all cols of the results array and sort by feature attrib
|
|
254 sortByClassCol = 'col' + str(np.size(avgFeatureMatScrs,1)-3);
|
|
255 sortByLengthCol = 'col' + str(np.size(avgFeatureMatScrs,1)-1);
|
|
256
|
|
257 matDtype = {'names':['col%i'%i for i in range(np.size(avgFeatureMatScrs,1))],'formats':(np.size(avgFeatureMatScrs,1))*[np.float]};
|
|
258 avgFeatureMatScrs.dtype = matDtype;
|
|
259 avgFeatureMatScrs.sort(axis = 0, order = [sortByClassCol, sortByLengthCol]);
|
|
260
|
|
261 # generate colormap
|
|
262 BYcmapData = {'red': ((0.0, 0.0, 0.094), (0.5, 0.0, 0.0), (1.0, 0.992, 1.0)), 'green': ((0.0, 0.0,0.658), (0.5, 0.0, 0.0), (1.0, 0.996, 1.0)), 'blue': ((0.0, 1.0, 0.828), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))};
|
|
263 BYcmap = matplotlib.colors.LinearSegmentedColormap('BYcmap', BYcmapData,9);
|
|
264
|
|
265 lowerHinge = matplotlib.mlab.prctile(gfMatScrs, 25.0);
|
|
266 upperHinge = matplotlib.mlab.prctile(gfMatScrs, 75.0);
|
|
267 cmLim = (upperHinge - lowerHinge) * 1.5 + upperHinge; # upper inner fence
|
|
268
|
|
269 # remove custom array dtype used for sorting and plot avg scrs (without the last 3 cols)
|
|
270 imgplot = imshow(avgFeatureMatScrs.view(np.float)[:,0:-3], aspect='auto', interpolation='nearest', origin='lower', vmin = -cmLim, vmax = cmLim);
|
|
271 axvline(x = int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj, color = 'w', linewidth = 1);
|
|
272
|
|
273 # if maxX wasn't set by hand, set it to max feature length and set x-coord accordingly
|
|
274 if maxX == -1:
|
|
275 maxX = max(feaEnds - feaStarts);
|
|
276 imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj);
|
|
277 else:
|
|
278 imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) - tickPlotAdj);
|
|
279
|
|
280 xTicks = [k * int(float(tickSpacing)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)];
|
|
281 xTicks.insert(-1,-tickPlotAdj);
|
|
282 xTicksLabel = [k * tickSpacing for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)];
|
|
283 xTicksLabel.insert(-1, str(-upStreamStretch));
|
|
284 imgplot.axes.set_xticks(xTicks);
|
|
285 imgplot.axes.set_xticklabels(xTicksLabel);
|
|
286
|
|
287 imgplot.axes.set_title(plotTitle);
|
|
288 imgplot.axes.set_xlabel('Distance from feature start (bp)');
|
|
289 imgplot.axes.set_ylabel('Feature class (low to high)');
|
|
290 imgplot.axes.set_yticks([]);
|
|
291
|
|
292 imgplot.set_cmap(BYcmap);
|
|
293 colorbar();
|
|
294 show();
|
|
295
|
|
296 savefig('chromatra_t_tmp_plot', format=outFileFormat);
|
|
297 data = file('chromatra_t_tmp_plot', 'rb').read();
|
|
298 fp = open(outFileName, 'wb');
|
|
299 fp.write(data);
|
|
300 fp.close();
|
|
301 os.remove('chromatra_t_tmp_plot');
|