Mercurial > repos > cmmt > chromatra
comparison chromatral.py @ 3:519e45d9539f
Uploaded
| author | cmmt |
|---|---|
| date | Mon, 23 Jan 2012 05:24:20 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 2:116d726d2ed4 | 3:519e45d9539f |
|---|---|
| 1 import os; | |
| 2 import re; | |
| 3 import csv; | |
| 4 import sys; | |
| 5 import math; | |
| 6 import numpy as np; | |
| 7 import matplotlib; | |
| 8 matplotlib.use('Agg'); | |
| 9 from pylab import *; | |
| 10 | |
| 11 def extractGffFeatures(gffString): | |
| 12 # GFF v3 | |
| 13 # 1. seqname - Must be a chromosome or scaffold. | |
| 14 # 2. source - The program that generated this feature. | |
| 15 # 3. feature - The name of this type of feature. Some examples of standard feature types are "CDS", "start_codon", "stop_codon", and "exon". | |
| 16 # 4. start - The starting position of the feature in the sequence. The first base is numbered 1. | |
| 17 # 5. end - The ending position of the feature (inclusive). | |
| 18 # 6. score - A score between 0 and 1000. If there is no score value, enter ".". | |
| 19 # 7. strand - Valid entries include '+', '-', or '.' (for don't know/care). | |
| 20 # 8. frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'. | |
| 21 # 9. group - All lines with the same group are linked together into a single item. | |
| 22 | |
| 23 res = []; | |
| 24 | |
| 25 if len(gffString) > 1: # check for empty line (i.e. row in GFF file only contains \n) | |
| 26 try: | |
| 27 gffSeqName, gffSource, gffFeature, gffStart, gffEnd, gffScr, gffStrand, gffFrame, gffGroup = gffString.split('\t'); | |
| 28 except: | |
| 29 return []; # exit, since we don't have 9 features | |
| 30 | |
| 31 # handle the gffSeqName | |
| 32 try: | |
| 33 chrNo = int(re.findall(r'[0-9]+', gffSeqName)[0]); | |
| 34 except: | |
| 35 return []; | |
| 36 | |
| 37 # handle gffStart | |
| 38 try: | |
| 39 probeStart = int(gffStart); | |
| 40 except ValueError: | |
| 41 return []; # exit, invalid gffStart | |
| 42 | |
| 43 # handle gffEnd | |
| 44 try: | |
| 45 probeEnd = int(gffEnd); | |
| 46 except ValueError: | |
| 47 return []; # exit, invalid gffEnd | |
| 48 | |
| 49 # handle gffScr | |
| 50 try: | |
| 51 probeScr = float(gffScr); | |
| 52 except ValueError: | |
| 53 return []; # exit, invalid gffScr | |
| 54 | |
| 55 # if the input string was well-formed, return the extracted features | |
| 56 res = [chrNo, probeStart, probeEnd, probeScr]; | |
| 57 return res; # return feature set (if any was found in this record) | |
| 58 | |
| 59 | |
| 60 # Define Constants | |
| 61 tickPlotAdj = 0.5; # adjust tick marks on x-axis such that they are exactly at the bin boundary (and not in the bin center) | |
| 62 | |
| 63 # Initialize Variables | |
| 64 feaNames = []; | |
| 65 feaChrNoList = []; | |
| 66 feaStrandList = []; | |
| 67 feaStartList = []; | |
| 68 feaEndList = []; | |
| 69 | |
| 70 gffChrNoList = []; | |
| 71 gffProbeCenterList = []; | |
| 72 gffMatScrList = []; | |
| 73 | |
| 74 # get command line arguments | |
| 75 gffFileName = sys.argv[1]; | |
| 76 feaFileName = sys.argv[2]; | |
| 77 outFileFormat = sys.argv[3]; | |
| 78 stepWidth = int(sys.argv[4]); | |
| 79 upStreamStretch = int(sys.argv[5]); # in bp | |
| 80 maxX = int(sys.argv[6]); # in bp, if -1 maxX <= max(feature length), see below | |
| 81 tickSpacing = int(sys.argv[7]); # in bp | |
| 82 plotTitle = sys.argv[8]; | |
| 83 outFileName = sys.argv[9]; | |
| 84 | |
| 85 # Read transcript information | |
| 86 feaFileReader = csv.reader(open(feaFileName, 'rb'), delimiter = '\t'); | |
| 87 for row in feaFileReader: | |
| 88 feaName, feaChrNo, feaStrand, feaStart, feaEnd = row; | |
| 89 feaNames.append(feaName); | |
| 90 feaChrNoList.append(int(feaChrNo)); | |
| 91 feaStrandList.append(int(feaStrand)); | |
| 92 feaStartList.append(int(feaStart)); | |
| 93 feaEndList.append(int(feaEnd)); | |
| 94 | |
| 95 # Read enrichment scores | |
| 96 gffFileHandle = open(gffFileName, "rU"); | |
| 97 for row in gffFileHandle: | |
| 98 cache = extractGffFeatures(row); | |
| 99 if len(cache) == 4: # if curr row wasn't well-formed, skip row | |
| 100 chrNo, probeStart, probeEnd, probeScr = cache; | |
| 101 gffChrNoList.append(chrNo); | |
| 102 gffProbeCenterList.append(int(float(probeEnd - probeStart)/2.0 + probeStart)); # calc the center pos of each probe | |
| 103 gffMatScrList.append(probeScr); | |
| 104 | |
| 105 # convert numerical lists into vectors | |
| 106 feaChrNos = np.array(feaChrNoList); | |
| 107 feaStrands = np.array(feaStrandList); | |
| 108 feaStarts = np.array(feaStartList); | |
| 109 feaEnds = np.array(feaEndList); | |
| 110 | |
| 111 gfChrNos = np.array(gffChrNoList); | |
| 112 gfProbeLocs = np.array(gffProbeCenterList); | |
| 113 gfMatScrs = np.array(gffMatScrList); | |
| 114 | |
| 115 # preallocate the results array, bins and 1 extra cols for feature length | |
| 116 avgFeatureMatScrs = np.empty((len(feaStarts),\ | |
| 117 (int(math.ceil(float(max(feaEnds - feaStarts))/float(stepWidth)) + upStreamStretch/stepWidth + 1))),\ | |
| 118 ); | |
| 119 avgFeatureMatScrs[:] = np.NAN; | |
| 120 | |
| 121 featureCounter = 0; | |
| 122 | |
| 123 for chr in range(min(feaChrNos),max(feaChrNos) + 1): | |
| 124 #get all rows from the feature file that contain information about the i'th chromosome | |
| 125 currChrIdxs = (feaChrNos == chr); | |
| 126 currStrands = feaStrands[currChrIdxs]; | |
| 127 currStarts = feaStarts[currChrIdxs]; | |
| 128 currEnds = feaEnds[currChrIdxs]; | |
| 129 | |
| 130 #get all rows from ChIP-* data sets | |
| 131 currGfChrIdxs = (gfChrNos == chr); | |
| 132 currGfProbeLocs = gfProbeLocs[currGfChrIdxs]; | |
| 133 currGfScrs = gfMatScrs[currGfChrIdxs]; | |
| 134 | |
| 135 # iterate over all features of the current chromosome | |
| 136 for j in range(0,len(currStarts)): | |
| 137 feaStrand = currStrands[j]; | |
| 138 feaStart = currStarts[j]; | |
| 139 feaEnd = currEnds[j]; | |
| 140 | |
| 141 #calc the corresponding probe positions for the feature start | |
| 142 if feaStrand == 1: # +strand | |
| 143 refFeaSt = 0; | |
| 144 while feaStart >= currGfProbeLocs[refFeaSt]: | |
| 145 refFeaSt += 1; | |
| 146 else: # -strand | |
| 147 refFeaSt = 0; | |
| 148 while feaEnd >= currGfProbeLocs[refFeaSt]: | |
| 149 refFeaSt += 1; | |
| 150 #now refFeaSt points to the correct probe according to strand orientation | |
| 151 | |
| 152 #calc the avg probe scores per bin | |
| 153 if feaStrand == 1: | |
| 154 feaChunkStart = feaStart; # bp level pointer | |
| 155 refChunkStart = refFeaSt; # probe level pointer | |
| 156 refChunkEnd = refFeaSt; # probe level pointer | |
| 157 | |
| 158 # determine values for the upstream bins | |
| 159 for k in range(1,upStreamStretch/stepWidth + 1): | |
| 160 feaChunkEnd = feaStart - k * stepWidth; # bp level pointer | |
| 161 | |
| 162 # find the correct ref for the current feaChunkEnd; catch potential IndexOutOfBoundEx when upstream region too close to chr boundary | |
| 163 try: | |
| 164 while feaChunkEnd <= currGfProbeLocs[refChunkEnd]: | |
| 165 refChunkEnd -= 1; | |
| 166 except: | |
| 167 pass; # don't handle the exception further | |
| 168 | |
| 169 #calc probe mean | |
| 170 avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkEnd:refChunkStart + 1]); | |
| 171 | |
| 172 #adjust pointers | |
| 173 refChunkStart = refChunkEnd; | |
| 174 | |
| 175 # determine values for bins in feature body | |
| 176 for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)): | |
| 177 feaChunkEnd = feaStart + k*stepWidth; # bp level pointer | |
| 178 | |
| 179 try: | |
| 180 while feaChunkEnd >= currGfProbeLocs[refChunkEnd]: | |
| 181 refChunkEnd += 1; | |
| 182 except: | |
| 183 pass; # don't handle the exception further | |
| 184 | |
| 185 # calc probe mean | |
| 186 avgFeatureMatScrs[featureCounter, k - 1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkStart:refChunkEnd + 1]); | |
| 187 | |
| 188 # adjust chunk pointers | |
| 189 refChunkStart = refChunkEnd; | |
| 190 | |
| 191 # write feature length in last col of the array | |
| 192 avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart; | |
| 193 featureCounter += 1; | |
| 194 else: # -1 strand | |
| 195 feaChunkStart = feaEnd; # bp level pointer | |
| 196 refChunkStart = refFeaSt; # probe level pointer | |
| 197 refChunkEnd = refFeaSt; # probe level pointer | |
| 198 | |
| 199 # determine values for the upStream region bins | |
| 200 for k in range(1,upStreamStretch/stepWidth + 1): | |
| 201 feaChunkEnd = feaEnd + k*stepWidth; # bp level pointer | |
| 202 | |
| 203 # find the ref for the current feaChunkEnd, catch potential IndexOutOfBoundEx when upstream region too close to chr boundary | |
| 204 try: | |
| 205 while feaChunkEnd >= currGfProbeLocs[refChunkEnd]: | |
| 206 refChunkEnd += 1; | |
| 207 except: | |
| 208 pass; | |
| 209 | |
| 210 # calc probe mean | |
| 211 avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkStart:refChunkEnd+1]); | |
| 212 | |
| 213 # adjust chunk pointers | |
| 214 refChunkStart = refChunkEnd; | |
| 215 | |
| 216 # determine values for bins in feature body | |
| 217 for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)): | |
| 218 feaChunkEnd = feaEnd - k*stepWidth; # bp level pointer | |
| 219 | |
| 220 try: | |
| 221 while feaChunkEnd <= currGfProbeLocs[refChunkEnd]: | |
| 222 refChunkEnd -= 1; | |
| 223 except: | |
| 224 pass; | |
| 225 | |
| 226 # calc probe mean | |
| 227 avgFeatureMatScrs[featureCounter, k-1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkEnd:refChunkStart+1]); | |
| 228 | |
| 229 # adjust chunk pointers | |
| 230 refChunkStart = refChunkEnd; | |
| 231 | |
| 232 # write feature length in last col of the array | |
| 233 avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart; | |
| 234 featureCounter += 1; | |
| 235 | |
| 236 | |
| 237 # assign names and data format to all cols of the results array and sort array by feature length (last column) | |
| 238 sortByLengthCol = 'col' + str(np.size(avgFeatureMatScrs,1)-1); | |
| 239 matDtype = {'names':['col%i'%i for i in range(np.size(avgFeatureMatScrs,1))],'formats':(np.size(avgFeatureMatScrs,1))*[np.float]}; | |
| 240 avgFeatureMatScrs.dtype = matDtype; | |
| 241 avgFeatureMatScrs.sort(axis = 0, order = sortByLengthCol); | |
| 242 | |
| 243 # generate colormap | |
| 244 BYcmapData = {'red': ((0.0, 0.0, 0.094), (0.5, 0.0, 0.0), (1.0, 0.992, 1.0)), 'green': ((0.0, 0.0,0.658), (0.5, 0.0, 0.0), (1.0, 0.996, 1.0)), 'blue': ((0.0, 1.0, 0.828), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))}; | |
| 245 BYcmap = matplotlib.colors.LinearSegmentedColormap('BYcmap', BYcmapData,9); | |
| 246 | |
| 247 lowerHinge = matplotlib.mlab.prctile(gfMatScrs, 25.0); | |
| 248 upperHinge = matplotlib.mlab.prctile(gfMatScrs, 75.0); | |
| 249 cmLim = (upperHinge - lowerHinge) * 1.5 + upperHinge; # upper inner fence | |
| 250 | |
| 251 # remove custom array dtype used for sorting and plot avgScrs (without the last col which stores the length info) | |
| 252 imgplot = imshow(avgFeatureMatScrs.view(np.float)[:,0:-1], aspect='auto', interpolation='nearest', origin='lower', vmin = -cmLim, vmax = cmLim); | |
| 253 axvline(x = int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj, color = 'w', linewidth = 1); | |
| 254 | |
| 255 # if maxX wasn't set by hand, set it to max feature length and set x-coord accordingly | |
| 256 if maxX == -1: | |
| 257 maxX = max(feaEnds - feaStarts); | |
| 258 imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj); | |
| 259 else: | |
| 260 imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) - tickPlotAdj); | |
| 261 | |
| 262 xTicks = [k * int(float(tickSpacing)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)]; | |
| 263 xTicks.insert(-1,-tickPlotAdj); | |
| 264 xTicksLabel = [k * tickSpacing for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)]; | |
| 265 xTicksLabel.insert(-1, str(-upStreamStretch)); | |
| 266 imgplot.axes.set_xticks(xTicks); | |
| 267 imgplot.axes.set_xticklabels(xTicksLabel); | |
| 268 | |
| 269 imgplot.axes.set_title(plotTitle); | |
| 270 imgplot.axes.set_xlabel('Distance from feature start (bp)'); | |
| 271 imgplot.axes.set_ylabel(''); | |
| 272 imgplot.axes.set_yticks([]); | |
| 273 | |
| 274 imgplot.set_cmap(BYcmap); | |
| 275 colorbar(); | |
| 276 show(); | |
| 277 | |
| 278 savefig('chromatra_l_tmp_plot', format=outFileFormat); | |
| 279 data = file('chromatra_l_tmp_plot', 'rb').read(); | |
| 280 fp = open(outFileName, 'wb'); | |
| 281 fp.write(data); | |
| 282 fp.close(); | |
| 283 os.remove('chromatra_l_tmp_plot'); |
