Mercurial > repos > cmmt > chromatra
comparison chromatrat.py @ 5:9cb525f30060
Uploaded
author | cmmt |
---|---|
date | Mon, 23 Jan 2012 05:25:26 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
4:4c9201237641 | 5:9cb525f30060 |
---|---|
1 import os; | |
2 import re; | |
3 import csv; | |
4 import string; | |
5 import sys; | |
6 import math; | |
7 import numpy as np; | |
8 import matplotlib; | |
9 matplotlib.use('Agg'); | |
10 from pylab import *; | |
11 | |
12 def extractGffFeatures(gffString): | |
13 # GFF v3 | |
14 # 1. seqname - Must be a chromosome or scaffold. | |
15 # 2. source - The program that generated this feature. | |
16 # 3. feature - The name of this type of feature. Some examples of standard feature types are "CDS", "start_codon", "stop_codon", and "exon". | |
17 # 4. start - The starting position of the feature in the sequence. The first base is numbered 1. | |
18 # 5. end - The ending position of the feature (inclusive). | |
19 # 6. score - A score between 0 and 1000. If there is no score value, enter ".". | |
20 # 7. strand - Valid entries include '+', '-', or '.' (for don't know/care). | |
21 # 8. frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'. | |
22 # 9. group - All lines with the same group are linked together into a single item. | |
23 | |
24 res = []; | |
25 | |
26 if len(gffString) > 1: # check for empty line (i.e. row in GFF file only contains \n) | |
27 try: | |
28 gffSeqName, gffSource, gffFeature, gffStart, gffEnd, gffScr, gffStrand, gffFrame, gffGroup = gffString.split('\t'); | |
29 except: | |
30 return []; # exit, since we don't have 9 features | |
31 | |
32 # handle the gffSeqName | |
33 try: | |
34 chrNo = int(re.findall(r'[0-9]+', gffSeqName)[0]); | |
35 except: | |
36 return []; | |
37 | |
38 # handle gffStart | |
39 try: | |
40 probeStart = int(gffStart); | |
41 except ValueError: | |
42 return []; # exit, invalid gffStart | |
43 | |
44 # handle gffEnd | |
45 try: | |
46 probeEnd = int(gffEnd); | |
47 except ValueError: | |
48 return []; # exit, invalid gffEnd | |
49 | |
50 # handle gffScr | |
51 try: | |
52 probeScr = float(gffScr); | |
53 except ValueError: | |
54 return []; # exit, invalid gffScr | |
55 | |
56 # if the input string was well-formed, return the extracted features | |
57 res = [chrNo, probeStart, probeEnd, probeScr]; | |
58 return res; # return feature set (if any was found in this record) | |
59 | |
60 # Define Constants | |
61 tickPlotAdj = 0.5; # adjust tick marks on x-axis such that they are exactly at the bin boundary (and not in the bin center) | |
62 | |
63 # Initialize Variables | |
64 feaNames = []; | |
65 feaChrNoList = []; | |
66 feaStrandList = []; | |
67 feaStartList = []; | |
68 feaEndList = []; | |
69 feaAttribList = []; | |
70 classBoundaryIdxs = []; | |
71 | |
72 gffChrNoList = []; | |
73 gffProbeCenterList = []; | |
74 gffMatScrList = []; | |
75 | |
76 # get command line arguments | |
77 gffFileName = sys.argv[1]; | |
78 feaFileName = sys.argv[2]; | |
79 outFileFormat = sys.argv[3]; | |
80 stepWidth = int(sys.argv[4]); | |
81 classBoundaryStr = sys.argv[5]; | |
82 upStreamStretch = int(sys.argv[6]); # in bp | |
83 maxX = int(sys.argv[7]); # in bp, if -1 maxX <= max(feature length), see below | |
84 tickSpacing = int(sys.argv[8]); # in bp | |
85 plotTitle = sys.argv[9]; | |
86 outFileName = sys.argv[10]; | |
87 | |
88 # Extract class boundaries | |
89 classBoundaries = map(string.atoi, re.findall(r'\b\d+\b',classBoundaryStr)); | |
90 | |
91 # Read transcript information | |
92 feaFileReader = csv.reader(open(feaFileName, 'rb'), delimiter = '\t'); | |
93 for row in feaFileReader: | |
94 feaName, feaChrNo, feaStrand, feaStart, feaEnd, feaAttrib = row; | |
95 feaNames.append(feaName); | |
96 feaChrNoList.append(int(feaChrNo)); | |
97 feaStrandList.append(int(feaStrand)); | |
98 feaStartList.append(int(feaStart)); | |
99 feaEndList.append(int(feaEnd)); | |
100 feaAttribList.append(float(feaAttrib)); | |
101 | |
102 # Read enrichment scores | |
103 gffFileHandle = open(gffFileName, "rU"); | |
104 for row in gffFileHandle: | |
105 cache = extractGffFeatures(row); | |
106 if len(cache) == 4: # if curr row wasn't well-formed, skip row | |
107 chrNo, probeStart, probeEnd, probeScr = cache; | |
108 gffChrNoList.append(chrNo); | |
109 gffProbeCenterList.append(int(float(probeEnd - probeStart)/2.0 + probeStart)); # calc the center pos of each probe | |
110 gffMatScrList.append(probeScr); | |
111 | |
112 # convert numerical lists into vectors | |
113 feaChrNos = np.array(feaChrNoList); | |
114 feaStrands = np.array(feaStrandList); | |
115 feaStarts = np.array(feaStartList); | |
116 feaEnds = np.array(feaEndList); | |
117 feaAttribs = np.array(feaAttribList); | |
118 | |
119 gfChrNos = np.array(gffChrNoList); | |
120 gfProbeLocs = np.array(gffProbeCenterList); | |
121 gfMatScrs = np.array(gffMatScrList); | |
122 | |
123 # preallocate the results array, bins plus 2 extra cols for feature length and transfreq (or other freature characteristic) plus 1 col for sorting | |
124 avgFeatureMatScrs = np.empty((len(feaStarts),\ | |
125 (int(math.ceil(float(max(feaEnds - feaStarts))/float(stepWidth)) + upStreamStretch/stepWidth + 3))),\ | |
126 ); | |
127 avgFeatureMatScrs[:] = np.NAN; | |
128 | |
129 featureCounter = 0; | |
130 | |
131 for chr in range(min(feaChrNos),max(feaChrNos) + 1): | |
132 #get all rows from the feature file that contain information about the i'th chromosome | |
133 currChrIdxs = (feaChrNos == chr); | |
134 currStrands = feaStrands[currChrIdxs]; | |
135 currStarts = feaStarts[currChrIdxs]; | |
136 currEnds = feaEnds[currChrIdxs]; | |
137 currAttribs = feaAttribs[currChrIdxs]; | |
138 | |
139 #get all rows from ChIP-* data sets | |
140 currGfChrIdxs = (gfChrNos == chr); | |
141 currGfProbeLocs = gfProbeLocs[currGfChrIdxs]; | |
142 currGfScrs = gfMatScrs[currGfChrIdxs]; | |
143 | |
144 # iterate over all features of the current chromosome | |
145 for j in range(0,len(currStarts)): | |
146 feaStrand = currStrands[j]; | |
147 feaStart = currStarts[j]; | |
148 feaEnd = currEnds[j]; | |
149 feaAttrib = currAttribs[j]; | |
150 | |
151 #calc the corresponding probe positions for the feature start | |
152 if feaStrand == 1: # +strand | |
153 refFeaSt = 0; | |
154 while feaStart >= currGfProbeLocs[refFeaSt]: | |
155 refFeaSt += 1; | |
156 else: # -strand | |
157 refFeaSt = 0; | |
158 while feaEnd >= currGfProbeLocs[refFeaSt]: | |
159 refFeaSt += 1; | |
160 #now refFeaSt points to the correct probe according to strand orientation | |
161 | |
162 #calc the avg probe scores per bin | |
163 if feaStrand == 1: | |
164 feaChunkStart = feaStart; # bp level pointer | |
165 refChunkStart = refFeaSt; # probe level pointer | |
166 refChunkEnd = refFeaSt; # probe level pointer | |
167 | |
168 # determine values for the upstream bins | |
169 for k in range(1,upStreamStretch/stepWidth + 1): | |
170 feaChunkEnd = feaStart - k * stepWidth; # bp level pointer | |
171 | |
172 # find the correct ref for the current feaChunkEnd; catch potential IndexOutOfBoundEx when upstream region too close to chr boundary | |
173 try: | |
174 while feaChunkEnd <= currGfProbeLocs[refChunkEnd]: | |
175 refChunkEnd -= 1; | |
176 except: | |
177 pass; # don't handle the exception further | |
178 | |
179 #calc probe mean | |
180 avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkEnd:refChunkStart + 1]); | |
181 | |
182 #adjust pointers | |
183 refChunkStart = refChunkEnd; | |
184 | |
185 # determine values for bins in feature body | |
186 for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)): | |
187 feaChunkEnd = feaStart + k*stepWidth; # bp level pointer | |
188 | |
189 try: | |
190 while feaChunkEnd >= currGfProbeLocs[refChunkEnd]: | |
191 refChunkEnd += 1; | |
192 except: | |
193 pass; # don't handle the exception further | |
194 | |
195 # calc probe mean | |
196 avgFeatureMatScrs[featureCounter, k - 1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkStart:refChunkEnd + 1]); | |
197 | |
198 # adjust chunk pointers | |
199 refChunkStart = refChunkEnd; | |
200 | |
201 # write feature length and attrib in last cols of the array | |
202 avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart; | |
203 avgFeatureMatScrs[featureCounter, -2] = feaAttrib; | |
204 featureCounter += 1; | |
205 else: # -1 strand | |
206 feaChunkStart = feaEnd; # bp level pointer | |
207 refChunkStart = refFeaSt; # probe level pointer | |
208 refChunkEnd = refFeaSt; # probe level pointer | |
209 | |
210 # determine values for the upStream region bins | |
211 for k in range(1,upStreamStretch/stepWidth + 1): | |
212 feaChunkEnd = feaEnd + k*stepWidth; # bp level pointer | |
213 | |
214 # find the ref for the current feaChunkEnd, catch potential IndexOutOfBoundEx when upstream region too close to chr boundary | |
215 try: | |
216 while feaChunkEnd >= currGfProbeLocs[refChunkEnd]: | |
217 refChunkEnd += 1; | |
218 except: | |
219 pass; | |
220 | |
221 # calc probe mean | |
222 avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkStart:refChunkEnd+1]); | |
223 | |
224 # adjust chunk pointers | |
225 refChunkStart = refChunkEnd; | |
226 | |
227 # determine values for bins in feature body | |
228 for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)): | |
229 feaChunkEnd = feaEnd - k*stepWidth; # bp level pointer | |
230 | |
231 try: | |
232 while feaChunkEnd <= currGfProbeLocs[refChunkEnd]: | |
233 refChunkEnd -= 1; | |
234 except: | |
235 pass; | |
236 | |
237 # calc probe mean | |
238 avgFeatureMatScrs[featureCounter, k-1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkEnd:refChunkStart+1]); | |
239 | |
240 # adjust chunk pointers | |
241 refChunkStart = refChunkEnd; | |
242 | |
243 # write feature length and attrib in last cols of the array | |
244 avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart; | |
245 avgFeatureMatScrs[featureCounter, -2] = feaAttrib; | |
246 featureCounter += 1; | |
247 | |
248 # determine idxs of class boundaries and write class value in respective cells | |
249 for c in range(len(classBoundaries)-1,-1,-1): # reverse iterate through the boundaries list | |
250 idxs = np.nonzero(avgFeatureMatScrs[:,-2] <= classBoundaries[c])[0]; | |
251 avgFeatureMatScrs[idxs, -3] = c; | |
252 | |
253 # assign names and data format to all cols of the results array and sort by feature attrib | |
254 sortByClassCol = 'col' + str(np.size(avgFeatureMatScrs,1)-3); | |
255 sortByLengthCol = 'col' + str(np.size(avgFeatureMatScrs,1)-1); | |
256 | |
257 matDtype = {'names':['col%i'%i for i in range(np.size(avgFeatureMatScrs,1))],'formats':(np.size(avgFeatureMatScrs,1))*[np.float]}; | |
258 avgFeatureMatScrs.dtype = matDtype; | |
259 avgFeatureMatScrs.sort(axis = 0, order = [sortByClassCol, sortByLengthCol]); | |
260 | |
261 # generate colormap | |
262 BYcmapData = {'red': ((0.0, 0.0, 0.094), (0.5, 0.0, 0.0), (1.0, 0.992, 1.0)), 'green': ((0.0, 0.0,0.658), (0.5, 0.0, 0.0), (1.0, 0.996, 1.0)), 'blue': ((0.0, 1.0, 0.828), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))}; | |
263 BYcmap = matplotlib.colors.LinearSegmentedColormap('BYcmap', BYcmapData,9); | |
264 | |
265 lowerHinge = matplotlib.mlab.prctile(gfMatScrs, 25.0); | |
266 upperHinge = matplotlib.mlab.prctile(gfMatScrs, 75.0); | |
267 cmLim = (upperHinge - lowerHinge) * 1.5 + upperHinge; # upper inner fence | |
268 | |
269 # remove custom array dtype used for sorting and plot avg scrs (without the last 3 cols) | |
270 imgplot = imshow(avgFeatureMatScrs.view(np.float)[:,0:-3], aspect='auto', interpolation='nearest', origin='lower', vmin = -cmLim, vmax = cmLim); | |
271 axvline(x = int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj, color = 'w', linewidth = 1); | |
272 | |
273 # if maxX wasn't set by hand, set it to max feature length and set x-coord accordingly | |
274 if maxX == -1: | |
275 maxX = max(feaEnds - feaStarts); | |
276 imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj); | |
277 else: | |
278 imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) - tickPlotAdj); | |
279 | |
280 xTicks = [k * int(float(tickSpacing)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)]; | |
281 xTicks.insert(-1,-tickPlotAdj); | |
282 xTicksLabel = [k * tickSpacing for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)]; | |
283 xTicksLabel.insert(-1, str(-upStreamStretch)); | |
284 imgplot.axes.set_xticks(xTicks); | |
285 imgplot.axes.set_xticklabels(xTicksLabel); | |
286 | |
287 imgplot.axes.set_title(plotTitle); | |
288 imgplot.axes.set_xlabel('Distance from feature start (bp)'); | |
289 imgplot.axes.set_ylabel('Feature class (low to high)'); | |
290 imgplot.axes.set_yticks([]); | |
291 | |
292 imgplot.set_cmap(BYcmap); | |
293 colorbar(); | |
294 show(); | |
295 | |
296 savefig('chromatra_t_tmp_plot', format=outFileFormat); | |
297 data = file('chromatra_t_tmp_plot', 'rb').read(); | |
298 fp = open(outFileName, 'wb'); | |
299 fp.write(data); | |
300 fp.close(); | |
301 os.remove('chromatra_t_tmp_plot'); |