changeset 5:9cb525f30060

Uploaded
author cmmt
date Mon, 23 Jan 2012 05:25:26 -0500
parents 4c9201237641
children e943b5e80fec
files chromatrat.py
diffstat 1 files changed, 301 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/chromatrat.py	Mon Jan 23 05:25:26 2012 -0500
@@ -0,0 +1,301 @@
+import os;
+import re;
+import csv;
+import string;
+import sys;
+import math;
+import numpy as np;
+import matplotlib;
+matplotlib.use('Agg');
+from pylab import *;
+
+def extractGffFeatures(gffString):
+    # GFF v3
+    # 1. seqname - Must be a chromosome or scaffold.
+    # 2. source - The program that generated this feature.
+    # 3. feature - The name of this type of feature. Some examples of standard feature types are "CDS", "start_codon", "stop_codon", and "exon".
+    # 4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    # 5. end - The ending position of the feature (inclusive).
+    # 6. score - A score between 0 and 1000. If there is no score value, enter ".".
+    # 7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
+    # 8. frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
+    # 9. group - All lines with the same group are linked together into a single item.
+
+    res = [];
+
+    if len(gffString) > 1: # check for empty line (i.e. row in GFF file only contains \n)
+        try:
+            gffSeqName, gffSource, gffFeature, gffStart, gffEnd, gffScr, gffStrand, gffFrame, gffGroup = gffString.split('\t');
+        except:
+            return []; # exit, since we don't have 9 features
+
+        # handle the gffSeqName
+        try:
+            chrNo = int(re.findall(r'[0-9]+', gffSeqName)[0]);
+        except:
+            return [];
+
+        # handle gffStart
+        try:
+            probeStart = int(gffStart);
+        except ValueError:
+            return []; # exit, invalid gffStart
+
+        # handle gffEnd
+        try:
+            probeEnd = int(gffEnd);
+        except ValueError:
+            return []; # exit, invalid gffEnd
+
+        # handle gffScr
+        try:
+            probeScr = float(gffScr);
+        except ValueError:
+            return []; # exit, invalid gffScr
+
+        # if the input string was well-formed, return the extracted features
+        res = [chrNo, probeStart, probeEnd, probeScr];
+    return res; # return feature set (if any was found in this record)
+
+# Define Constants
+tickPlotAdj = 0.5;    # adjust tick marks on x-axis such that they are exactly at the bin boundary (and not in the bin center)
+
+# Initialize Variables
+feaNames = [];
+feaChrNoList = [];
+feaStrandList = [];
+feaStartList = [];
+feaEndList = [];
+feaAttribList = [];
+classBoundaryIdxs = [];
+
+gffChrNoList = [];
+gffProbeCenterList = [];
+gffMatScrList = [];
+
+# get command line arguments
+gffFileName = sys.argv[1];
+feaFileName = sys.argv[2];
+outFileFormat = sys.argv[3];
+stepWidth = int(sys.argv[4]);
+classBoundaryStr = sys.argv[5];
+upStreamStretch = int(sys.argv[6]); # in bp
+maxX = int(sys.argv[7]);            # in bp, if -1 maxX <= max(feature length), see below
+tickSpacing = int(sys.argv[8]);     # in bp
+plotTitle = sys.argv[9];
+outFileName = sys.argv[10];
+
+# Extract class boundaries
+classBoundaries = map(string.atoi, re.findall(r'\b\d+\b',classBoundaryStr));
+
+# Read transcript information
+feaFileReader = csv.reader(open(feaFileName, 'rb'), delimiter = '\t');
+for row in feaFileReader:
+    feaName, feaChrNo, feaStrand, feaStart, feaEnd, feaAttrib = row;
+    feaNames.append(feaName);
+    feaChrNoList.append(int(feaChrNo));
+    feaStrandList.append(int(feaStrand));
+    feaStartList.append(int(feaStart));
+    feaEndList.append(int(feaEnd));
+    feaAttribList.append(float(feaAttrib));
+
+# Read enrichment scores
+gffFileHandle = open(gffFileName, "rU");
+for row in gffFileHandle:
+    cache = extractGffFeatures(row);
+    if len(cache) == 4: # if curr row wasn't well-formed, skip row
+        chrNo, probeStart, probeEnd, probeScr = cache;
+        gffChrNoList.append(chrNo);
+        gffProbeCenterList.append(int(float(probeEnd - probeStart)/2.0 + probeStart)); # calc the center pos of each probe
+        gffMatScrList.append(probeScr);
+
+# convert numerical lists into vectors
+feaChrNos = np.array(feaChrNoList);
+feaStrands = np.array(feaStrandList);
+feaStarts = np.array(feaStartList);
+feaEnds = np.array(feaEndList);
+feaAttribs = np.array(feaAttribList);
+
+gfChrNos = np.array(gffChrNoList);
+gfProbeLocs = np.array(gffProbeCenterList);
+gfMatScrs = np.array(gffMatScrList);
+
+# preallocate the results array, bins plus 2 extra cols for feature length and transfreq (or other freature characteristic) plus 1 col for sorting
+avgFeatureMatScrs = np.empty((len(feaStarts),\
+                          (int(math.ceil(float(max(feaEnds - feaStarts))/float(stepWidth)) + upStreamStretch/stepWidth + 3))),\
+                         );
+avgFeatureMatScrs[:] = np.NAN;
+
+featureCounter = 0;
+
+for chr in range(min(feaChrNos),max(feaChrNos) + 1):
+    #get all rows from the feature file that contain information about the i'th chromosome
+    currChrIdxs = (feaChrNos == chr);
+    currStrands = feaStrands[currChrIdxs];
+    currStarts = feaStarts[currChrIdxs];
+    currEnds = feaEnds[currChrIdxs];
+    currAttribs = feaAttribs[currChrIdxs];
+
+    #get all rows from ChIP-* data sets
+    currGfChrIdxs = (gfChrNos == chr);
+    currGfProbeLocs = gfProbeLocs[currGfChrIdxs];
+    currGfScrs = gfMatScrs[currGfChrIdxs];
+
+    # iterate over all features of the current chromosome
+    for j in range(0,len(currStarts)):
+        feaStrand = currStrands[j];
+        feaStart = currStarts[j];
+        feaEnd = currEnds[j];
+        feaAttrib = currAttribs[j];
+
+        #calc the corresponding probe positions for the feature start
+        if feaStrand == 1:   # +strand
+            refFeaSt = 0;
+            while feaStart >= currGfProbeLocs[refFeaSt]:
+                refFeaSt += 1;
+        else:               # -strand
+            refFeaSt = 0;
+            while feaEnd >= currGfProbeLocs[refFeaSt]:
+                refFeaSt += 1;
+        #now refFeaSt points to the correct probe according to strand orientation
+
+        #calc the avg probe scores per bin
+        if feaStrand == 1:
+            feaChunkStart = feaStart;  # bp level pointer
+            refChunkStart = refFeaSt;  # probe level pointer
+            refChunkEnd = refFeaSt;    # probe level pointer
+
+            # determine values for the upstream bins
+            for k in range(1,upStreamStretch/stepWidth + 1):
+                feaChunkEnd = feaStart - k * stepWidth;  # bp level pointer
+
+                # find the correct ref for the current feaChunkEnd;  catch potential IndexOutOfBoundEx when upstream region too close to chr boundary
+                try:
+                    while feaChunkEnd <= currGfProbeLocs[refChunkEnd]:
+                        refChunkEnd -= 1;
+                except:
+                    pass; # don't handle the exception further
+
+                #calc probe mean
+                avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkEnd:refChunkStart + 1]);
+
+                #adjust pointers
+                refChunkStart = refChunkEnd;
+
+            # determine values for bins in feature body
+            for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)):
+                feaChunkEnd = feaStart + k*stepWidth;   # bp level pointer
+
+                try:
+                    while feaChunkEnd >= currGfProbeLocs[refChunkEnd]:
+                        refChunkEnd += 1;
+                except:
+                    pass; # don't handle the exception further
+
+                # calc probe mean
+                avgFeatureMatScrs[featureCounter, k - 1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkStart:refChunkEnd + 1]);
+
+                # adjust chunk pointers
+                refChunkStart = refChunkEnd;
+
+            # write feature length and attrib in last cols of the array
+            avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart;
+            avgFeatureMatScrs[featureCounter, -2] = feaAttrib;
+            featureCounter += 1;
+        else: # -1 strand
+            feaChunkStart = feaEnd;    # bp level pointer
+            refChunkStart = refFeaSt;  # probe level pointer
+            refChunkEnd = refFeaSt;    # probe level pointer
+
+            # determine values for the upStream region bins
+            for k in range(1,upStreamStretch/stepWidth + 1):
+                feaChunkEnd = feaEnd + k*stepWidth;  # bp level pointer
+
+                # find the ref for the current feaChunkEnd, catch potential IndexOutOfBoundEx when upstream region too close to chr boundary
+                try:
+                    while feaChunkEnd >= currGfProbeLocs[refChunkEnd]:
+                        refChunkEnd += 1;
+                except:
+                    pass;
+
+                # calc probe mean
+                avgFeatureMatScrs[featureCounter, upStreamStretch/stepWidth - k] = np.mean(currGfScrs[refChunkStart:refChunkEnd+1]);
+
+                # adjust chunk pointers
+                refChunkStart = refChunkEnd;
+
+            # determine values for bins in feature body
+            for k in range(1, int(math.ceil(float(feaEnd - feaStart)/float(stepWidth)) + 1)):
+                feaChunkEnd = feaEnd - k*stepWidth;   # bp level pointer
+
+                try:
+                    while feaChunkEnd <= currGfProbeLocs[refChunkEnd]:
+                        refChunkEnd -= 1;
+                except:
+                    pass;
+
+                # calc probe mean
+                avgFeatureMatScrs[featureCounter, k-1 + upStreamStretch/stepWidth] = np.mean(currGfScrs[refChunkEnd:refChunkStart+1]);
+
+                # adjust chunk pointers
+                refChunkStart = refChunkEnd;
+
+            # write feature length and attrib in last cols of the array
+            avgFeatureMatScrs[featureCounter, -1] = feaEnd - feaStart;
+            avgFeatureMatScrs[featureCounter, -2] = feaAttrib;
+            featureCounter += 1;
+
+# determine idxs of class boundaries and write class value in respective cells
+for c in range(len(classBoundaries)-1,-1,-1):   # reverse iterate through the boundaries list
+    idxs = np.nonzero(avgFeatureMatScrs[:,-2] <= classBoundaries[c])[0];
+    avgFeatureMatScrs[idxs, -3] = c;
+
+# assign names and data format to all cols of the results array and sort by feature attrib
+sortByClassCol = 'col' + str(np.size(avgFeatureMatScrs,1)-3);
+sortByLengthCol = 'col' + str(np.size(avgFeatureMatScrs,1)-1);
+
+matDtype = {'names':['col%i'%i for i in range(np.size(avgFeatureMatScrs,1))],'formats':(np.size(avgFeatureMatScrs,1))*[np.float]};
+avgFeatureMatScrs.dtype = matDtype;
+avgFeatureMatScrs.sort(axis = 0, order = [sortByClassCol, sortByLengthCol]);
+
+# generate colormap
+BYcmapData = {'red': ((0.0, 0.0, 0.094), (0.5, 0.0, 0.0), (1.0, 0.992, 1.0)), 'green': ((0.0, 0.0,0.658), (0.5, 0.0, 0.0), (1.0, 0.996, 1.0)), 'blue': ((0.0, 1.0, 0.828), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))};
+BYcmap = matplotlib.colors.LinearSegmentedColormap('BYcmap', BYcmapData,9);
+
+lowerHinge = matplotlib.mlab.prctile(gfMatScrs, 25.0);
+upperHinge = matplotlib.mlab.prctile(gfMatScrs, 75.0);
+cmLim = (upperHinge - lowerHinge) * 1.5 + upperHinge;   # upper inner fence
+
+# remove custom array dtype used for sorting and plot avg scrs (without the last 3 cols)
+imgplot = imshow(avgFeatureMatScrs.view(np.float)[:,0:-3], aspect='auto', interpolation='nearest', origin='lower', vmin = -cmLim, vmax = cmLim);
+axvline(x = int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj, color = 'w', linewidth = 1);
+
+# if maxX wasn't set by hand, set it to max feature length and set x-coord accordingly
+if maxX == -1:
+    maxX = max(feaEnds - feaStarts);
+    imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj);
+else:
+    imgplot.axes.set_xbound(-tickPlotAdj, int(float(maxX)/float(stepWidth)) - tickPlotAdj);
+    
+xTicks = [k * int(float(tickSpacing)/float(stepWidth)) + int(float(upStreamStretch)/float(stepWidth)) - tickPlotAdj for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)];
+xTicks.insert(-1,-tickPlotAdj);
+xTicksLabel = [k * tickSpacing for k in range(0, int(math.ceil(float(maxX)/float(tickSpacing)))+1)];
+xTicksLabel.insert(-1, str(-upStreamStretch));
+imgplot.axes.set_xticks(xTicks);
+imgplot.axes.set_xticklabels(xTicksLabel);
+
+imgplot.axes.set_title(plotTitle);
+imgplot.axes.set_xlabel('Distance from feature start (bp)');
+imgplot.axes.set_ylabel('Feature class (low to high)');
+imgplot.axes.set_yticks([]);
+
+imgplot.set_cmap(BYcmap);
+colorbar();
+show();
+
+savefig('chromatra_t_tmp_plot', format=outFileFormat);
+data = file('chromatra_t_tmp_plot', 'rb').read();
+fp = open(outFileName, 'wb');
+fp.write(data);
+fp.close();
+os.remove('chromatra_t_tmp_plot');