view test-data/batch04_QC17_rep02_263.mzML @ 0:62c4813fbe7a draft

"planemo upload for repository https://github.com/computational-metabolomics/dimspy-galaxy commit 6321871098b2c4bc9e321d20b7e66fff3d641839"
author computational-metabolomics
date Sat, 11 Apr 2020 16:48:19 -0400
parents
children
line wrap: on
line source

<?xml version="1.0" encoding="utf-8"?>
<indexedmzML xmlns="http://psi.hupo.org/ms/mzml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://psi.hupo.org/ms/mzml http://psidev.info/files/ms/mzML/xsd/mzML1.1.2_idx.xsd">
  <mzML xmlns="http://psi.hupo.org/ms/mzml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://psi.hupo.org/ms/mzml http://psidev.info/files/ms/mzML/xsd/mzML1.1.0.xsd" id="batch04_QC17_rep02_263" version="1.1.0">
    <cvList count="2">
      <cv id="MS" fullName="Proteomics Standards Initiative Mass Spectrometry Ontology" version="4.1.12" URI="https://raw.githubusercontent.com/HUPO-PSI/psi-ms-CV/master/psi-ms.obo"/>
      <cv id="UO" fullName="Unit Ontology" version="09:04:2014" URI="https://raw.githubusercontent.com/bio-ontology-research-group/unit-ontology/master/unit.obo"/>
    </cvList>
    <fileDescription>
      <fileContent>
        <cvParam cvRef="MS" accession="MS:1001472" name="selected ion monitoring chromatogram" value=""/>
      </fileContent>
      <sourceFileList count="1">
        <sourceFile id="RAW1" name="batch04_QC17_rep02_263.RAW" location="file:///C:\Users\weberrj\Downloads\raw\raw">
          <cvParam cvRef="MS" accession="MS:1000768" name="Thermo nativeID format" value=""/>
          <cvParam cvRef="MS" accession="MS:1000563" name="Thermo RAW format" value=""/>
          <cvParam cvRef="MS" accession="MS:1000569" name="SHA-1" value="05fd9f3b64954df1f3618f216902c8acf7b4f508"/>
        </sourceFile>
      </sourceFileList>
    </fileDescription>
    <referenceableParamGroupList count="1">
      <referenceableParamGroup id="CommonInstrumentParams">
        <cvParam cvRef="MS" accession="MS:1000557" name="LTQ FT Ultra" value=""/>
        <cvParam cvRef="MS" accession="MS:1000529" name="instrument serial number" value="SN06102F"/>
      </referenceableParamGroup>
    </referenceableParamGroupList>
    <sampleList count="1">
      <sample id="_x0032_63" name="">
        <cvParam cvRef="MS" accession="MS:1000002" name="sample name" value="263"/>
      </sample>
    </sampleList>
    <softwareList count="2">
      <software id="Xcalibur" version="2.5.5">
        <cvParam cvRef="MS" accession="MS:1000532" name="Xcalibur" value=""/>
      </software>
      <software id="pwiz" version="3.0.19248">
        <cvParam cvRef="MS" accession="MS:1000615" name="ProteoWizard software" value=""/>
      </software>
    </softwareList>
    <instrumentConfigurationList count="2">
      <instrumentConfiguration id="IC1">
        <referenceableParamGroupRef ref="CommonInstrumentParams"/>
        <componentList count="3">
          <source order="1">
            <cvParam cvRef="MS" accession="MS:1000073" name="electrospray ionization" value=""/>
            <cvParam cvRef="MS" accession="MS:1000057" name="electrospray inlet" value=""/>
          </source>
          <analyzer order="2">
            <cvParam cvRef="MS" accession="MS:1000079" name="fourier transform ion cyclotron resonance mass spectrometer" value=""/>
          </analyzer>
          <detector order="3">
            <cvParam cvRef="MS" accession="MS:1000624" name="inductive detector" value=""/>
          </detector>
        </componentList>
        <softwareRef ref="Xcalibur"/>
      </instrumentConfiguration>
      <instrumentConfiguration id="IC2">
        <referenceableParamGroupRef ref="CommonInstrumentParams"/>
        <componentList count="3">
          <source order="1">
            <cvParam cvRef="MS" accession="MS:1000073" name="electrospray ionization" value=""/>
            <cvParam cvRef="MS" accession="MS:1000057" name="electrospray inlet" value=""/>
          </source>
          <analyzer order="2">
            <cvParam cvRef="MS" accession="MS:1000083" name="radial ejection linear ion trap" value=""/>
          </analyzer>
          <detector order="3">
            <cvParam cvRef="MS" accession="MS:1000253" name="electron multiplier" value=""/>
          </detector>
        </componentList>
        <softwareRef ref="Xcalibur"/>
      </instrumentConfiguration>
    </instrumentConfigurationList>
    <dataProcessingList count="1">
      <dataProcessing id="pwiz_Reader_Thermo_conversion">
        <processingMethod order="0" softwareRef="pwiz">
          <cvParam cvRef="MS" accession="MS:1000544" name="Conversion to mzML" value=""/>
        </processingMethod>
        <processingMethod order="1" softwareRef="pwiz">
          <cvParam cvRef="MS" accession="MS:1000035" name="peak picking" value=""/>
          <userParam name="Thermo/Xcalibur peak picking"/>
        </processingMethod>
      </dataProcessing>
    </dataProcessingList>
    <run id="batch04_QC17_rep02_263" defaultInstrumentConfigurationRef="IC1" startTimeStamp="2011-04-02T02:31:05Z" defaultSourceFileRef="RAW1">
      <spectrumList count="1" defaultDataProcessingRef="pwiz_Reader_Thermo_conversion">
        <spectrum index="0" id="controllerType=0 controllerNumber=1 scan=5" defaultArrayLength="2931">
          <cvParam cvRef="MS" accession="MS:1000582" name="SIM spectrum" value=""/>
          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="1"/>
          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="132.076675415039" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="1.6160045e07" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of detector counts"/>
          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="4.5233156e07"/>
          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="70.002814331902" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="169.772678461202" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
          <cvParam cvRef="MS" accession="MS:1000796" name="spectrum title" value="batch04_QC17_rep02_263.5.5. File:&quot;batch04_QC17_rep02_263.RAW&quot;, NativeID:&quot;controllerType=0 controllerNumber=1 scan=5&quot;"/>
          <scanList count="1">
            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
            <scan>
              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="0.572338333333" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="FTMS + p ESI w SIM ms [70.00-170.00]"/>
              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="1"/>
              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="34.890625" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
              <scanWindowList count="1">
                <scanWindow>
                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="70.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="170.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
                </scanWindow>
              </scanWindowList>
            </scan>
          </scanList>
          <binaryDataArrayList count="2">
            <binaryDataArray encodedLength="26972">
              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
              <cvParam cvRef="MS" accession="MS:1000574" name="zlib compression" value=""/>
              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
              <binary>eJwU2Xc8l10UAHCrUJRoKCuyI2VkRI6RVcpv75GRKKuhIVtCw8oIJYSsEpIQUgmV0NBAywhJJSMN73n/+n6eX89z77nnnHufx6emfi35DWEEWODz1UYinADsl58VdCIJEFS3kakdRQDZY3u2f0PjHZXHi04SgBO89RcvmgDaH+VZLrEE8BsfXc5GzwxY28+eJkD+RbsjtmcIIKZXwC1CL5s2H/yLdkTlrulNI4B0W+6TG+k4XpI+I/gCAQ5x/R9FZBDgamKUU18mAR6esAlaeIkA/mo0Pgud2strTc8mwJI/+yEqB6+P79dUzyVAqYw5k5dHANqN/b0K+QTgeul+z0atTedZSgUESKtxWeuOmjuWJpagJ8KnXb4XEmDdxHimYhEBZnJLTrqgXrwDBfxiAqxOjf2Sjy5R7zEuQauFnUOUywiw03rBoSpU9NsmizPXCNC0RE3iN3rBzdKuooIAwjFvizdWEsDojd7jyCoCkO2XmpRWE2AsJuHL7tsEcHVT0t5YSwBB7YYkY7Q78Ymkbz2uWyXL5kQTAWJEQ97HNBOAnx+oXXGPANENXiPe9wkgQrlIEG/BuE4blfSho5t/XPyJ5hj6Rn9vI4DC90+hLU8IoDZ16egjVNsoP920gwBL245xp9BeHc+w8qcEuKiy0DupE9ezVcW8BrUcCG/a95IACcPXN11/RQClUfd/mm8JcOkxK9qilwB/bq8KUX1HAJ71tNjq9wToe3Fnh8onApREb13JQluJ4tY56F+yg+CyIQI8F7hgrj5CAL1nlxN+jRKAfsu3/s0XrPeCoMi2cQKsqFmeu+krARQ7nRZ8/k6AZHX5HKFJzMPRX4ky6Kfjv57ITxHggXOiUM80ATynXQ9mzRAg0H12f8wsAQTmJIJqfxNg2wE9hsAfAtiva7id9pcATsb2awXnsV8V+RE8VF/2neNqASIQgx3enBMmQmf667q3aFevadQRcSJ4PrtuLL6YCH3M/VIP0bRE06aTkkQ4FJUNVUuJsHDNAe8ny4gQ+FJo/pE0EbRsrzaHyRBhZ6Js2L/lRNBMDiw9v5IIqUq8yY9riLCGZmkRLkcE2S0LKjlKRKjZEKocjL43F1r5Ce0Ye7nURYUIrwwrNIfXEWHL25Ift9SJoHbsfYO+NhHSp0JHVNfj/X5Df7brEGHP8Glh0CUC782RgQC0+8xvt9fo9mCTOzIbiHAv6+0cGS17detrDtp56oPhw41EMF/xQCt1ExFq3+5bk6JPBCGWJTXTgAj+u4LzZTcTYd/QQc5WYyKEed6O24Mm3ss5dtOECKMxz9OmTImwwVq7K9UM8yB8PW7jFiLsWPG0RtWcCE4ljzSfoTcOmxoetiTCw2uisXJWRFD+pn9DAzWzWBo8bEsEa/2K5LV2RLAcHOx1QoXTV9E22BMhRP5yR78DEW4fpggVOxGhQpOs/gWF323r/qK7D13OXLOTCGs/GNrwXHC9QtH/utCtY12S9QQiPKbdKQklEWHZy3V5S8hEcOYJJj6hEoG1N6tphE2EpT+/XhThEKHdKNplCerb0mqxDU1q5K6wd8W8nzL+SkIDD/CuD6Nxcrc6Gt2IULry6tyAF+Z1trlbzpsINukKwplo8+mmPyb7cH1cYQOf/UTIdn/YJemD9911PpKIkpIV7Uz9iPC8dXzBtUAiDIQwksWPEsHdWlX69DEiiFY/PPcRtT1uUnzlOBG81kN98AkibLsjfScuhAhvSoX8FoQSQeQXLUce/fTo0MQO9I3YdGIyapgpuqAWXRYd9vYFaqJf1fsWXZwhdO0TekBlf+ooWn/wm/zX/+9rein7C+U4fo5cEIZ9/ayMYIz+eBm/3gr9YFWWaYMKZMzx6KhWUHXQXvTrk/Vl3qhUsVd0IPp5p1jsMZRzrrsnA1Vrp5BzUf1iA9Jt9IK7dWc9yv/d0NmIPu7629uDig71ifSiZUeylr1Df4/8ezWGui7tfiMWjv0sdT9kCTpp/Z0jh2b6SA6rom9XOKlpojPi0un6/19v9O00Qbc8ej9mjobEfs20Rz2l/tkR0eW+BdZk9N9w3CIqumG1oxEb7aIZxPDRUNUOl90oyXOC7/7/c81jC/aiWk6aJd5ortetYD/03YVwl0Po4OxvuVD0jc4Oj0g0bkPYhmi0angoJhbt0Y/amICKCL2qTv3/d3pJfCaaqEdmFaLrVo+HFKO7dhjGlaHCI+kiN1CXhwE6lajA346zN9Eji2ZJt1DV2p2K9WhvzmjS3f+ff9D99R5qv1r58zPU5GWn1uII3K8jmSny6NdLY4RsNC966kQVWp0oyNeOJMLHY990LE9i/Z+vlbBHDbuutzmhWQQKe0k0EV4vKIkTPkWE+VC1L2NoRh3np3YcEb40i0jtOksEHf/I987niDD7kM++iFZWnLzVEE+Eg0qLwkwS8ZxYt5Yjm4x19pxt255KhHOvLHtq0TfSOwh/LxBBPlX4U2YGERzHBs42ZGJf53y3EsoiwjGrGZsUdHk3dQfzEs77K/7AmWw83w4tlgnJxf1lVlJSjl513rvWOI8IGiTRogto7ZqqlpJ8PJfUQghLCzAPlbL0jKvYl/etasWLsM6XWyJc0arda/vc0PWkcWm5EiL8rO4qZJbivhO94T2KHvuz9cWRG7gvp4jaT1Hd96xzUEkE6hLW+1n08pvKMqGbGJfWkpS5aozry6XhqRp8bt+nz44NROj/1Nh6AQ3cEpta3UiEALOpQ1LNuP+vmLXqo9WOZgc33SNC7IiEoxm6eDzjWR2aseFOuPwDIjBJKxTWok9qbsdGteK5eZOcEv6ICOoJHrOHHhNBnD55vxQd3iNybAZVgJgXpzux7y4K+L/oxvNa/b5IwHOMK5G3KesFnocGqpO/evBcjUm90PwG49gmFbCmlwgyhtMPxtEi52OpHn34HvrY9Fmrnwj7X9tP/vuAfdgT3JT7kQhut7RF5T/hOXjcVWI/mtYQWnNqAPfftT0jXYNEWLImSiJtGN9fL1wZQqP4nrqh9iccNX7x9nAhavox1noSvbJr3DN2DPfj40vx3l+IsLfpcdjMJBEcHvQVus7g+aLiRPkxi/sszS9UaQ7PhQPJKq4ot+FQRx2qVFqZnfwb69/Uz1f8R4Tz3V9bL83j/tq68Wi1IAka82/k1S0gQQDdet8nURIkWWw9OICmPPpyrUWcBOVNrxtNJEiw5ASxOlCSBD6VGatipUhw/anW9+mVJKBWK9Rqy5Lgdsq9mly0TufR2VH07IBif+YaEvR+nnyjp0ACbbvUUDP0sXsT6Sg6WqTnfHEtCeiP5a0jlElgbD0UKKRKAuG8I4WH0b1PT7K2q5GgIeeEr7QGCbJMr466a5Lg47IWXiCa5LK2bgwtjvq+0VeLBIfifodFa5OgK16uqhEtFdYdGVhPAsq1yaiFuiRYujlLPWQjxnXJ2DMJ7c+de6JvSIKIT7LCMcYkuFCaK30aNey1CjmH3trmOWtsRoLF+u+NtLaSYOP9zO/3Ade/9V5Vkg2u29x7Z4QtCbRMH+oKOpHgdYKrXQi6o6VFY80OEpTMBPvFoQt1LzzUcSbBjU2+jxvQtafCDF/sIsGizul/HBIJTG4JHJYlk/Ccl647iaYG/QwPppIguOFTlDydBC91HXJqUCfXD9YxLBzH8gG3lUOC+3vvhNtzcd3L1nEe7ybBpMCX+WtuJHAjtvmzPElQkLKosNOLBP55h+gx+0jg2VCrb7OfBFDSEfrajwRsakr1hgMkuBqUd/olmti9cuOyg9gHst7G5w6RwD1szZeNgSRwiLloz0GXxgl4HjhCgoep0RHCx0iw4t/cApvjaOXyzVWo3vahvrATJGg/bW6sE0qCJsaGMDf03IACITYC++kx73dJJAl0Pc92fD1JgmfDg3N7TpHg55P1Z1tjSGDm7vHjRCzez7UdKz9DgsPeiU/mUDf1XlXLsyToKVR57X8O6xpqJnEyngSW1KV1ixJJoLlcYIiXQgKL0mSxO5kk6JYyeJaThXXRtnFedJEEz8+pXLZEfy3S1hS+RMLvNxOj3TkkUBuZ9LLPxbiWbD+hc4UEp3/saTuN/rnd4LirEPO3Yn9ZWhHWIeVrjlsJ+lqDNnGdBJ1qS8uhnAT/uL6ZOegLdunVlBskSHM1T7lYhf0rd5CifJMEfgWy0u9vYV5oXp53akigkb/3/ChK9BcRoNSSwPeeQLdFHfaDmuTafPTz3We/9eqxnlmrDiQ3kiD85qEPMk24Xs92Adp9Erjoalsnoqs+N91uRh9dzEt7gkpKtM59bCHBb03O5bCHJIi9s6nWvhXzvGjufGs7xlf+PmTnYxJMLFN5kPCUBPGfbpq96SKBncPY3hUvSLB5f5eYEmr84mqFfw8JbLrG5KPRJ3zu9KU32Odt6dkn3mG94Juzx3vcv0GOu258wPw3nNy9aYAE4/aTkmWokHq7fNAQ7n+OeejGERJ4V/qEnBzHvFUPVvhMkKAyXfaL2gwJrp1+u+jkLPaHstRhxi9cN03wQzQ69MeHM406ktkh3wTJkLSjWNRKiAzJ291+awmToapQbNoWtZU90fsNfXEzb5C5kAx2cefTPoni7za219IXk+GAkcWKtSvIcGKpxJ+dK8kQNGx24QiqllGg0YpuI1TnzKwmQ+fKxJdqcmQQjJknOqBZGneX3UZts+Ne/EZFfu8JsFUmQ+y/czwZdTI0hufeWaxJBu0Vg+ZkLTL4jPcOhaN5tx07X6M3+/e7FK4nw4dSx4ByHTJIbekooWwkQ3BEUcnoJjJcrVv3UdWUDHV6UnZbzMjg9yDCqQX1Tw1yyjcnQ0bcTb7HVjIcLuJuvg5k8GXvybe2IcPz7sFtU7ZkIKndHxa1J8P4DrP0yp1kkG3pTRV3wfsk4xb7EXAdnvJDxajl4eO/5YlkoFf8U1GnY54Cz3UmoRXulLsKDDL8c1og9BK9mROfQGRhHNP/bI+hPwWS8u+iBf4XFX6iW/6Vuc+j/roOHFkOGVYp8zpSUbk18inX0QO3/1Bv8MkQ7vrx9vhuzPNETuhxV8zHtj1j+u5kaBnoSvZHz/gMhN7ywPjvz0m5eZIh3yhy49p9ZJC/pb51J1opkDawdj8ZLLzesNaju1tH7oT5kkHM4m93G+pXuagq9hAZQm/XFPQfIcOtFZfefjhGhl+aIUqaIWTYaXBSWj4C+4PcTk1AM9WLPbwi8f6MH10Fp8nw8e2rnsGzZJCueENYcY4Mx1dlhvuh7ITtj5bHk8GKKXPyHJpmUGzRhvo3t/r/TSCDCkdz6HsyjrN9qfTIeTJ4GO7+dz+FDGTfvc3zaWRQvtBxa0c6GYhRIkbNGWRw2l9jqplJhmerz0e4ZeF8HufGdC+SwazRyPo5euTEHvm9lzA/a0Uq8lDai/RtCtlkEJXXJgvnkkHJoqdl9xUyZIdYtl5Dd15r+a2aT4Zdv2I4m9FGqsTnr2jUVdFjTwrJ4NIua2pcRIbIF2+XNKFbBhwJKdfJECfCvrW8nAyBRuSe4BtkuPc4JWtnJfbFKkN6ClqbUG3wvpoMS63nTqfcwn5qTHo3VkeGmqLF4/vqybAiqKDPqIkMt1P5dTubyXDIZ/einFYylG+5KcRsI0NP0D2XH+jqXaEpWo/JkHIzVaEcvUMu2nj4Kcax+Of2MvSMRe7amU5cX7WY+/0unDd3fulb1FDm2Nrf3WTQVFOqL31BhmYrPeElL9FUnX+qb8nAMKUNN6DWhC+nzveSodg15jajjwxl5V7OG/oxj/HSZTc/4L7MlLow8BH78HHqGY1PZJipDzIpQ9cdHqA9RV8fvOmhMoh96xL+5eUQrlc7t5E7QgZJ3WNJ3FEy9BdcP/x9nAz3BV1n9b+RQbXkh4D6JBk2lKVcU5gmQ/3eZ2FsNMpQJIEwi/uNMhhLm8P+CLll8uEPGXiFuw0c/+I+0n04kypAAcfn74aVBSmgr9ctdAeNnRQJKxWjQLyEVt+gOAW2uzpmz0lQYKfv3s2xUhTQEpIQTJemwNWR2Uq+DAVUbYVlildQQKwlpH9qJQUqsrSGxFdRoFd46OKsLAX8Dm/6YSBHAS/TOTlxBQpESLiBKTq7KvJ6C1pavbzNVZECCtEPZm+so0Bax7vfNDWcr3qNRhpKKvtw3UyDArUCeWeMNClg2s5KvIwudt/ds1ibAitfPdfR3EQBgs+BBA1DnA9enzNF8xdXzdcaUeB6IiVy8WYc92Mhxw199mM8qcoGn5fRr5DZhuuXuZU8j446pmgk2lNAIKtMqxLdKkRt0NtFgbL7IjxhIgVqlpmXx5AocGtQRHkPlQIBP8+tk6ThtdcJw5N0CgxttImrQVvKDNYMMykQrbdovJVFAavkth8H2RSweBbyRoBLga4xqcdhaObKa/XlPIyjlTl0H9VVUu7YzafAxJFMgXVuFNAY+j5DRgvc2B0O7hQoWnbfyGcPBeafrNqRhJpJRbYd9qTApvePPtn7U0BnwcSmSPTJ52vT5eiph9n1OQco8G3THmv5gxSY/Ca8xxg14Jgviz+G+Wm/kVyCei0+tvZCCAUuFzw6uiicAtWKFVojERSYZnu5CkZjvYqb4+xiKQBjLCGN0xRoX+P7LCQe85E74dyLGmlYLNiXQIEPWwtDQtHCDzMdhxMp4FOXEayeTIG+qNOjNikUuDdi6n41lQLWE5Gi1hkUiHrlePxLJtZVcrtDZTbWZ+Cxp9xlzPvG+MwhVDWKZd+fQwFqp5LIDzRd9mfpyyIKMA7nFk8VU6Dh5oVumTIKXNpG1Oi8jv0n+ShzpJwCCQbMjTdvUOCNhFz8bzR7Y62HbBUFdk3e7yShoy7dcwvvYN7faqaGNWK+kxbHEJsosNruAD/zLvZXuMKZLfcoIN+e/NzyAQVSfGY4fPRVJ1fCuYUCKwRvmXu0UUCu3MfpYDuOa5NLn0GXaD9Yf+cx7ospklAn6kyUpkh1UmBRMnP8dRf2Sf+hwfnnFMhacG7bqxcUyDPKfrvpJfZb+N64kB4KPF2dlpqLPvgscub3KwroZW4v13yNeRy6uXxRLwXsltg6ZKE5Lv2VWe8owB4+L6H+iQK+4cV16QMUMDHTe684hP1+erxI9TMFbGsaT6Z/pUDiObnGSfRhRSEteAL76Xld8pNJCvy8kL+4E42Lknp/ZArzq5j8MGOaAo9/vzQbQ5ey5PWSZzA+45/jGrMUIHpIPwlDv52K7Vkzj/u7pW99hAAVJIOYKj8EqfBUxuOsvxAVNA5o7ItCa7a4/nITxuuPlwJmRKgQFysroCpGhaWObyoGxKlglZnwe+FSKrA3nvrYvJwKH8dFDlespMKODcamcquo0JVWE60mS4UUrav1J1dTYVkz5eJ+Zbz/y+isoBoVHpbcv7YZ7RMdss1B98wnPjivQYUv3S+/O2lS4RjsG0vUpkKI75P3yahdwZThgA4VPHesldyrS4XE3s7BWDRHfrgtFd1UHZNw3pAKJ9oXyroaU6G0e6WQugkVar9aXPbaQgWt7FXHfc2pcPnii29fUWqgTPXZrVTY+lLuzig6IcSrvWtFhTmzKuEh9FrTxvo5tNn3b5mINRWcP1r5SttR4f13b+8fDlRwc9xjuHwHFR6BS3a6MxVm31TUbtlFhcbhm0UBqFh45HGKCxWu2vLrgtE32uH31tKowCWU8Z9xqKApcGc0g0+Fe1MNEXa7qSCk8GFRMCow92NokxsV3r57ldeFRhCNCuQ8qFAm7tSphpZ8yDD8vIcK34e+n7+4lwp3V5A3O3tRQbDocoWNLxWiy7eU3fWjwsHq+WElfyrkfwvMXHGACkE3JxUuHqaCDLFFh3+ECvr/do6aH6eCjadItvEJKlxI9toyjDr7HjggEkIFuUs+bcahVJhW3fejDb0j2CpRH0aFbu8nvcwIKkitV0g5hT6SdTKhRlIh12LZjWBUgbqjNRJ1U7vReyGaCqmRG8hXY6hwOO96eedpKpwvKgnMPUeFlZ9lXeTjqZCgsqrWNJkKKse1joycp4LS7JSheyqO/27X+qoLVGhR7ZU5lEmFIQdibhvq/nyq9Am6oirs9Wt0kdC14hHUT6Z4bk0WFeoaDgqQUWmpXnF3dKGGU2kZqrHSfXcr6rNrcns3unNXxNB7NHud2PMhVEKO8cvkIhXi50eK7NBVbt+bPdFtdSG3/VFWxmBcPJqlqvG4CG2ycEm8iV59dvhWDerJefz3HqrQMZjVhVoSzgm/Rv8ZOV6eQn/tm4kVvIR5bElpE0EvB1x1lEST5K8kSqGHRjp6l6OX/F4UyaMl2yNalVFedrLZhv+dER3UR79vro4yQ63e9L60/P/+9yKXnVCh1jM8Fir/8EocDzXYIUPzQbcs2eEWip7XVP13CQ2y7Nl8B+2hxdZ/QFcP1C+UzMa8PM8I00Tb03x3EVBd04mCyRzsu6YpecVcKsRMuG5JQFeUqOQX5lHhdVHqmFsBFRZ7LF1QWIzzbszIJZViPzisVMtFx5dGZh67RoXiOzNJOjeoMJrnsrwavaAeOGR6E+t2p9Bqz20qCF9eqzmMhtYE8wRqqWCxqibtbx2uU6eyq/YOFWLLV7xLbMI6nGxcNXePCsHr7U/ZPKDCWpZoVTF6KQiSnz6kwrtI0XbFdip0vmEUHn1MhTOdR955PMHzxizhdxQq3FT/XbuLCo7FQYsqe3B/q9w16EWHp5ddkHtDBbUrTRcV31LBzDJgHxnVmHGJ9kOzz0htvdVLhbG7PgFx/VT4GTNo5foO+9LanHcYHXO+Itc1QIW/2333Cw1SwXhqk5/cZzwHki/Jvh/Fc042UfTdFyqcy/yx33CcCtZrLw/IzOL+Ouug/+oXFdaEXG9YOEcF86MT2kpoXErzhqI/VPAd6Ig3mKdCWlyz7Cd07JyYnJEwDbirMyftxGkwechMMnoRDfbK7at9hv4leqb/RM/rX7vtI0kD+R7lw/tlaLBd1U5cbDkN6tTsdv1EX117tJO2ggbVmwsGrVfRoHRWm3AJXSQuGcSSpUH7731fReVo0LN28XK6Eg30jTbkCGnQ4PPCFn8nlLY7eM1dNMzDQ/IRqr6wTGq/Jg1CZnQ6+9G+lHCVdm0aGEQbxbxFWwiav4r0aNCv4eY0u5EGt086K5Tr08CsIEtp0JAGN2QN5y1MafDQcqKm2QzHlZUhi2+lQerkl33FVjjfm3h5D2satAU+nthlg3Gz5Z9nO9GgYLvpZ/ntNHh6hJS5D53rum6p7kyD8orXKrxduI6YQoNZCg0sXYiXVWm4vvNr1h/eTYPNvfEpe9xo4CVWdaFyDw0k1+0hnfekgWY79KzfS4PQxTxiiA/ms/5q1zB6R/tg9KUAGizfIi71LZAGumkf9isH0wDfeZRd6LtTKfFfQmjw/TLpX0EYDawlKqs9wmlge1BKMT2SBi7N1KL4KBocGHIQ8z1Jg6ljAku7UctMNYniWBr82W1W5JiM67vgaBiUjvnWNLqic5EG77WElz69QoN1iTkr/Qsx/x30511lNBA/+Cwl6BoNfk3ffatfRYPFGSn/LtyiwfyI6uiSGhqQNN4fH0Z3nNPesrOeBhvOiu36g9bmt55qa8J5W86s0r6L+TUibV3STINc480B9qjo4Ujz7Ic08FUSoZ9pw3hu0Zdbd9Dg/qeuDdkvaKDB8+R+7KXBG8VMfd0+GqjOuR4z6qeBWuuyrsiPNDAsSMj8hG6bXUtV+YR10bwSZzmA/WHVY/MLFflossRpiAbUEt1Ej1EaSC/8/pU9ToNiizUqSl/xvu+LvsZM0uCwAnvfCOr+NMKTP02DLX9u3SL/pkHF8bOa59GlMqreC//h+m7EirkL0sH+2OJf99A/Q7tOfUR9yi9zxIXpcCyCVHNnIR1qLWgGe5fSYadLkvsHKTp0dzkeXCNNh7W8zHW7V9JB36RC44EsHZRznovxFOlgYMy83KFEB013Y1e/tXQI2WzYulOZDgGNY7OhKnSoobxsjELfmt4yfITem5AV6lxHhwdPksQlNOmwO/1quQL6aWDXjJUuHVqvjx64uIEOhT87f1zVp0P+e6W440Z0eLSS2xpjTIesQMeLyaZ0mC2Zjt20hQ4rXyx8HItKxKuO/LWgw2HhUzXbgQ4Viu3//+86rCacP2lsRQdBOYBJazrIr+LO3LWjg4awVVqAIx3Yhg+v2rnQYeDhStF0Ah0WbWqvXk+kw7mvbe9m0DMVkwvzKHSIe3vjVQWNDhYbjKwlWLiurXwNLhvnSdfQOcGhg9v3787n0APvIu9eRy0jtZQFuXSgeYkerEevnHmj/5tHh/e3QO+hOx0aidl8C2862HnHnN60jw5ltVHi+j50WO67ZdAfNVG63RDlj3lITc87dYQOgbZ1lXeP0eFV1+O6P0F06BsbOGoWTofzVyBIOJIOSREfXsSg1wOk5u6epINnn/Lhe+j+nbpFirGYb7kA85o4OtgqTq6zP0OHl7rj+l1n6ZD5rW/9ZBIdGHPbs1+cp4PucLhqcSbG1acj8eAiHRTfzVtUXaLDPDujk55HhxUd6voGV+gw7C1zuBqVNgx/zCygg979tKt30GfThLBFhXSQcb6/Vv4qHbKtNptroGHlAQv46B2JW9+PFNGB0jPP9iyjg4DvjMSqa3S462AeVINWbE7gHKrA+Sytc76jEnvzX/5AnTxKc7Vr6MChTHi+QoNynewKG+nw40FjYgl6hjhx6TpaWl/lWo0WnvbeqHaXDrkJYcFu9+jQ7Aq15WjRi1HP8BY6OPZl71zYinXeGaf8uB37g7zD/t5TOsi5202ceE6Hvf8y3kS8pEOGf+m6WLQj++RAaw8dNvtWHj38CvP46I9fUC8d4FkOWaIP6zOycdl+tPZR/8pd/XQosegLfv2ODlKhE9o6w3S4St/GtPpMB17TVIPhCB3SHLaRxEfpkBjiPMZEt4oOKP4bp4PXoPSCoSnsk89PPh6awTzXMXeWztJBOCO8lPaLDm/m7xoSftPh3er9oTZ/cJ/ZHDPloA97bzc+Qm/eo8QozdOh+KR0OQ8VEerKDRBgQFnMla5QEQY8D9zfUraQAVkeBdFrJBjQa3/WLEaKAeuzeLB7FQPmPme2CaxhgIzqse44OQZ4HT/ib6/AAIJv5p90FQb+nXPwfJQaA/a2O++7gWbznt8+rs6AD+lt78Y0GWD8ut9bTYsBSz4wHk+uZ0CGu79upC4DLKJkNyahHh8Ip9L0GNDn6mcWZMyAiBx/A5stDFCZrXuYZsmAwPmCBfMoUUWYYAAMGCue0eqzZoDd4q3tJ23wfmnl/C50FdEwTMqWAQV/zzl22THAp23J7mJ7BkyrObf0OTDge/vvxEInBhyqPL90N5EBn+/bn9pBYsCeZbefypAZUKzz1C8and2jmR+Hcvrb2lJR/51/FqhTGPAgOFxMD7Uxv/TWDL1cT/lwF3X3pmh0ok3Kv/6JUBkwMd9jy0H1YwSfeqLbIpMO1jIZYC1Wcj+Rhev61a344X9tr9xuZDMg8ofxD08+A040rXHydGVg+/w4p+T2f32+nTqKbijcJ9aL/sqY+nXZnQGqd33i3qFn+ItXbvPAeT7S68rQU5aOf26jS4Uili3Yg+N+q5PV8WQAr6NSxABNHXOJrEA3FH9rGEYvH/kisnAvA0qEBDRV0Y+uBnlb/r/eevFpgRcDggqXB86iOtmPNNZ6M+A+3f2iPgoOZ2Tz0XDzXQ9eoleeJo7DPgbcnP+WHokmnY0IGUdHx89QDu7HfP4k7QhDvUx7JRLR5L8W9zLRjkuFNT3ojMeX+Q/obylFuS/omXjHjBU+OD7bWtQQ7ZDQO2mNHnRhLiWge9zIJ/mo4jNH+UMou1Th4nG00MB9dyS648Me7XzU/y8p8Sbqechh/zPUOclt53fUWHOR9RRa16tU/QtdVLtFUtCXAVohPJMF6Oo57XZx9J90YJMmetVEWcQefSu6fPMOtJgn3kNGp4zaB6jo+riWm3z029KCy/tR24JrtwPQvOBJ3hF0y/odMsHorWN1cjHoY6MyuIqSJHXyalEbw/6td1HCQOnuFvRHnvbUI1S7QTijC/Vwyr3/CvW225rSj77S2uUzhJK3XbT+gZ7eaxc8jZo7qbfNo3qu1xsX+GEfvLSlSaA+/JC8pWjUaX8TOVQq+quCGmot+m6RNrpXg7nCCF1X/pOyBT027bXABn2VFd3j8v99TgWSdPRGRqa8O8rW+PDaF5Xm6MoForK5tz1PoC1hZ1yj0W15f+3Pow3WUw0X0Y+XzPSuoHuEqWmlaOWep7U3UK+HnTtqUa3JVGYT+mb7j/kWlBThs/EZquIT2/AaffHnY9U71PJ1Q/coukr1dtlX9DXhVOw0Kmo0lfMH3Vi+/bOQPwMMFF2HFqPT21caL0d7in2erEYHyDEK61CL3QJXN6IJ2Qb+m9EdlaKvLNDcntUJ1mjclxLN7eiN8syFLqjI9esVNHSBvOJuDlq1U2rGHRXY0/HKD5UUr8o/gqaP8D4EoU/GWsdDUfFTCc/OoNbS/RPn0dN9ZO8M9Lz6Rb08dNXxvTfL0Hy973cq0BMmjnO30LdJkTuaUP/808L30YcnLfa2oqk3SOmP0SMStsZPUR/HL1XP/79fWtuvB+1eXdPxFl0yKu/yCe3aPp428v99p2bej6OuXt4fv6EhDW9C5tBdJ9mbhAL+PxeOioqi9oy5e5LossPr369Epa4LvJNHq7wtxJRRLy/bem3U/OdLggEaV6w4bBrw/znZ9Q3QvPQUfSfU9tRfQxc0vIrjTQn4/9zsusFEvxUdX+iB/jA+7eqF/ma46vmg5UmPVh1El4fFvTiOGspl7olABaseFceghPTviufQlJevR9PQkeN1nIsobfdrah66VvmJXcn/8YfUx5SjBSX0N1WomIG0fj0qkZ/2/B76KvZjXgcqWWai2IN+9+4g9qECCW7/htD6tQJbJ9Cx8/cnfqKrjhS4CBxgwLicVswidPLt1j+rUKFvlyqU0JEj1y+povcq5nS10FDd9yZ6aJjS3aTNaPO3gS9b0No8up0Vul/iu5Qt2nbWd70DmqHSxN+OBqxy+7Hj//sHbIWJqLpd5GUa+uSb5AzzfzVnDPhoiLnLtDvKvuMsux/dnijdGIBqRZ1PPYL+bZhcFoLe/lvgfRL1c2/9dgZ9X171MQk98rT7aDYa2JhOvYLusrNYXowmTXm1V6Gl9hq8BvTCqZf7H6K0HcrrOtCDVvml3eiXn5MjL9ANN7z93qCN9JGSd/+vl/JeZQglm5eGfEZ3fkz79AUVfy4a8Q0luq6LmEKvZXgd+Is+1KvWED6I6/ju81UMfRaTrrYELa28t2YF+imkJ0YRFdc2XaSOPtbuJ2qj3F6/RSZoJXfRmCU6aqWn5ICe+bP4ogtqd5g2Q0EnVpst90Qlb41o+aDyr7ZO+6MDS7Ijg1DXwEmbCNTdmZsdg4aGOYWdQY8v9alK/v/5sJkNGWjBnZPj2ej2MvAu+n+cudcW19DINYdqK9GH0rJyteiDjZ6r2tBhlUs5Hf8/n1a99hXqreiqO45ucm/8MYNey130TPgQvre+tc8tRvO+uarLo4kaok4E1O/fAbmD6OIwF40TqKWP1OZIVHvKsz4WlYvVeHLu/2t+zswllFTLHihGmyfEVleg4X6vTW6jIe4pkc0ogRQ+3Y0q1fYl9KNNHZnrRQ7j99KCkkZJ9OEu1w2aaLDlpjg91LOJbmyMtl/UnLZFa+TiC3egnPY4KxZafnCH2T50mYFXWyhqLqd1swgtuPjY4it6vaL1/gzKa2eL7AvEvnlncigKfQsLK4fRuIGsJaNoTbna9Z8oW6qlXugInjPjB63WoYSnhTwP9Ofx15MH0KXstT5SRxlwxz3ecvExzAtX8p8XOl7QsXMGVaB4bRY5juf8ql+qSqjDujk2C11sRM4aCcL+PF308yvalW27+gf6tOtrycITDNCkadisQssKB2W3oEHrHV77o8KEZwOB6DeafK9SMPbftjmravSAZ+6nnaFYR5OXtdQw7NeybsUTkfidrPKwJw5N7CiuE4/C/XTIeturk/i9Qy8yEY7B945c2zGVOPy+2PlD5hR67t5N9VuozCfdhIOnGbD5uILJafRFY/fmhyjnS3yf4hncv0lMj/NnGdAZNn1e+hwDKBfrRj6i+3dov7dMwPHneYxzifi+fZWwYhp95vL6wd1kfL8qbTBXP4/fJ0be+cdTMT6dsUr1dNwfAsPnP2fgNXlO1jgT33+ad5w0ruB5a33o6SV0lc5Liav5mIfhWes1BQzYGnitkV2J79EFT7WIN/Gcy3qqkYamzbvoXr+F79uCfTW30OrgDK5eDdb//hOSWi2ez0CZcG1gwLvuef2wJtxXcg38Y80M6M+N0QhBM224J1Pu4bx39Y/vfIB5WR6gy3iI66YT9l1+gn2ZvrrKqAPj/50WvR1dOv9l9Ap6NeejushTzPOXn27Vnfid0l/5aVE3nnuSUq8c+xiQs7j5j1M/9sPHjGOa7/G5nfdmxwcZ4Lb1edyHL7hf4MRZ6XHsc/kRuu5XPO/cVY1K0KiZylHtCQYYXY+LeYwqxE7ZvEOlSi4orP6G34FjSi7c7wxw9Lm9YsE0vt/ZeuujRJj4vbtKV24hE2S5Zxu60J+HJH+/Qh957HawEGXCVe+w5z4STFjdujtNRIoJ0udPSTcvY4LqnPjHdSuYMPf95xcPWSZoK8eejldkwr39z3WL1JjgGzE4dE+DCRuTx5RUNJmw52/8ek/0ynSbgZ82E5YmZl8+p4Pz/ri70VOXCa4WspdlDJlw7X3G8o2oQXgJtxitczNNOG+O47ZLhadbMGE0WGqTBOB8S3fUGKHLSvPNQ2yY8FCh00/ejgk9ug/zFjkw4XPVrayHjkxoSmrdqePEBMk/WnMFO5nAddUcXshkwp2E8+lMVIdoRrzJYoLE4/5IOTYTzql+G6BwmHCjIqjbHT0QomwXiE4+Vx1ZzmPCb5rYMwW0aNEnZx305SNJdX101f5MnYuooZac12M+E5gT/kM96JjBE95bVLAu+/QQ6pyXE3LVlQnyWx68cvdgQnCw8KybJxO8la1iGr2Y8OFJzYEQX5xHUGnJ6gAmBN2WkPt9mAmvFIMOOQQyId8hL3V9EBOkYuo8h4OZ8D0mvM4njAkWOe5C99Bb4ze0N0UywbRDwIgdxYQ1IXEigieZ8FhDnv76FBNSNrB/82OY4Bbpq5eD3n9jtncwjgnZahrVC84yYf11DZPZVCb4LN+/NSGdCRvokiS7C0z8+23wQsRlJmxhuUmVo2r9R8T/FGC9ftHfhhYy4azYYKt/CRN0u5ctfFTBhOTRPStZlVif4bUrV99mQq0fxftlPf5umdon0oBxmE8TB5uY8HrBidKKVoxvd5VOURsTLi0qPyrQwQTxYE6cRRcTcBVpXs8xzrgMyccvmeA16aE/1YP9MnnYzrmPCeGijxIiPzCBohC2S3mQCTujC7XrPzNh0IAR5jvDBGpyYEUlylyvMkb8xQQ535eVXn+ZkLdtiqo3j32wSCP3gxAL8k4tLX8jxQJT01QlB2kWCC7TFR1GN9t72dKWs4AiZ9KkvZoFUwKFZovXsGCZZsxwCprLjd/Qin7kMXPrlVkQbfaU+0yTBaPOP/5p6rBgb1lNaY0+C+ya3lyVMWLB6lUjjJ7NLEiSM782bsKC6Ya5q3/Qi/kL/Xq3smDMqVruA/rb72CBoC0LDuwb2LpwGwtEDw0u9LFjgddm5/mbjizIfOsZxtrFgolgi8PmBBakWYTV7ka/zhg5XSKx4M/CzKxtDBZUD5wIHOCy4DVPb5DMwzhtPI60+rDgSc8bdqs/C/J9PLTqAljAsGBsdTjAgrJp+9jNh1ggSwCzbYH43HKGSD0KJz9QFY6yQAcGdw1FsmCtWk9DfBQLrqq7S9qcxHUsKZvYkcACqnb/h4dJLBAyWmpZk8aC5teKAp9Rtf0ssfx0jNvQ751dJgtCJh1fZKH6v+9nfMhlwUyTTNeSChYElql7a1ViHucy1mQ2skB32FCmq4kF69ddG7NsZsGjG2nE8+gldflLJQ9Z8FjI3uQrav/4foZTGwuMZoH+s50FhSW7qb6PWFDB6M58+pgFxuXaYqRnLNidv4Jj9pwFdUln07ahbVa/DySixJXc3Q/7WbCOHX/4J7p648QnlU9o//13tSMsuGml2N73hQXOf5wGz0+x4IhB+0vpaayP851SwRnMc/iJVVxUrHRbZhtKs43UnfzDgtNPMpYx/7Lg6JecrWwhNhgfPbp4uzAbzM/eXUhEqb+Ce+joWNFYKxfdsP3Ti/gFbLhJ5wXoirIhL/TtrQBJNtDFlPWXrWBD5Tb6vspVbGjfqiQoJ8eGFbsXHN2jwgaVUxJsHTU2SHr/rlTQYINCDO+A0CY2hImon71owgYzsbNl7C1sKE/rvaS4lQ3eDg3LqlDHI+1rYoENT3/PB9tbsUErJKOSim5JMXsfb8OGP49tGkvQJyU3QrfasWF16krPPSQ27Dm/OjKazIaGLVxiHp0N7hPHJFYz2GCQ5rrdmcmG+MA1oX85bNAtmg94xmNDzaF2jjGfDZ8XdVzI9GCDv9IpQpknjl96A/b5suHZqUYl0wNsEDnfcVrpEBvaFiTu/HqEDdNVV4woR9lA06S1hKALmM4/5Y+xwe3ZgF7EcTak1eq1p4XgvweHHC8Pxbz1MzcIROL6VaK2mKGm20KcjaLYQGm12GKOPhXLGzKOZcPB65mXJ86w4Vstd+FAAt63VIq4JYkNZ0syBvJRld/+h++j5PUBpWOpbFjovuHThXRc1+FLOnUX2PAlc9SuF7XXMZcmZLDhTvsSiXMoZ/u3u9lo4dt9+TbFbHh1jH2Hco0N/Fnvem4lG7rcPttm3mTDgc0Ov76igi8NlW1us2Gr/xeSWy32xYa72TJ32CAlqeuyupENcx/Zi7Sa2XBxn9UCGmpn8Muq+z56EiZXP2DDqayilusP2TCzb168r5UNP28nvs1tZ4OYS3VrD9pQkxQf+JQN8ns7kgtQL1dF78xurMMSssBrNEvY5PXa52yQjX543KyHDZHzf3V03mLfUIW/3uhnw6LnVpbUjzhPi7719Cc2JL/QiFw5zAbtoITGNWhH2+XFnaPY14Rfz/y+suFRpthYEsoL0J+Km2DDjWUlzou+sUGA0B69BG093uwz8IMNl4P+ltVNsSGbnfM+S4AD9je5T/8IciDrz+qIKBEOmKx1uB6wmAPHAj53dktwQFo9bPTzEg7IwaUvf6U44MSN+LdhGQcEQ594XEWHC2U6/6JBH49MOkpz4GJJAWE3aqv6/MgR9Gr0YNQwqrswZtNPNPpDSZG4DAfS199+polWat0z3YSeUnmZY4nmqt4Y2IfeN/jR14smObKshtHoeauCOXSiRidZeDkHyt30zZTR7n2v/+qhpx/wPjqjbJ0AYzpaGQm13miWNby6ggY3fd1xE43VqAqqR5ty7YZb0ADD9WVfUYaW+brdKzhwb5r5ib4S171ANEJiNQf2qFz50yHPgXztl+YRCnhfCCzYqMiB0og32wKV8Dpmxc97yhwYFDZQ36POgfFD3nZLNDjwIou2zXY9B3b3myxv0MX1NnjkqBtw4MjUw0Pehhyw/HYtvM+UA4ROCdYvCw5QouxKYrZiXg1rJRLQhd1X7ppbcqDeS4VY4MKBhjeOP9zJHHjaKn2FQ+XAmWu6wkUcDqiP0hVpuzHvMktFfNDFL4ZFQj044CfY8U7nED73KFRC6ygHfj9W/jdzjAPPf1F8DYI4oDVdqHMthAM7tDZyrcM4cGAqTVkwggNv3S7xVdH7XzrFtNCFlqrd1P+vvzo4+UVy4EeX4rfDJzlwc3TcPQgtMIhXPolWD97elHeKA4qjWsPEZA7YxDks3JKC9ejSFc9Nwzo8PvRq5UUOyDM/fNTPxn7QPL7+eB4HUvetTWUVYl1fmDzef5UDy3/5HSwt4sCrj/6GhmUcUHjNrlQv5wBR21FQsAL7rLawe9UtDjjGfyqaqOGAzL2uJxNNHEjOELxudJcDH4VOqS18wIGlulqddagN3Pk+gbJ//KXYt2CezqkN0dHLXT02tx5yQLje/dm7Ng44D3QGJjzmwKRd/5n5TlxvmKLqoS4OmOfekBB8xgEr16SOTtRVLNeW9ZwDsKH56+YXOJ6DwLXNPRwwDd11Lxe1sX+rt/ctBxIaRtimfbgPemTOPOznQPhF5SDzdxjfM/2QL4McyDTevjJsggOPzEs+CU9y4KzQNf9NIlxY2zBonyLKhVdX7Suq0JFCK406cS7ITmaP4h+v8F6u7uUGaS60jhv6i8twoeDwlKLkCi6UtgcomstyISHrjcKsAhderF3RVavGhdqXOyY+ovcdtMXE1LkQVHp474w2F6JbM7iCG7mwK7/Z4aIxF7z3D+rqmXPh77qinm4LLnxI6ux7sJULcFHXerct/m7S2nHZngtGbbP3StAqqbqvalScp62gtQi1XiJw7TqTC7aMbIcJLhdO2c/S9/O4YLxxzZ8ju7mge0XgwbwXF5g6/n1C/lxQWNeyYPwYF66EGD/rO8GFlyFRtgJxXMi2CXHZf5oL/Xl1TavOckF6ldkY9RwX2Of6ggqTuHAs69/r2GQunMtZEDqCjkTVxPtd4MIJVsICuwwu3Iw7vb00C+P0P9tYVs4FucgSwfZaLvR0yx9aX8eFzGbbLW5NXFh25NSzHvSQfEfzR7T4psmHJXe5cPW91/JRdGuU+3xRMxcU3auE4u5h3hYs/nv4CRcsPX7UpHVj3LxNPX4vuPB2y2fP4R4uxEaNrUjt44L/mREn6X4uVKtcSKkZ4IKZzVoT/UEuSLCWxIkOccFqp1Hsth9cEO0emp1He0KqOs1+cuFWeJWwJ7qkaubO4Rmct9B839Z/XGhWFGr+OY/1aN2ZtnEhD1b01a/zEeXBtYmgmZWLeCA7EPzh8mIedFWRVx5fwoPtPQZlVUt50NLUfkRyJQ+822Zfua7mgX5Z0cRfFR489fjz7ZcuDw4G3e7Q3YT3szYEko14UNR4Rv+fJQ9SigmMOuCB2pzeP2VrHuyM3xQWZ8uDfx7vnxo78ED6gLpWhCMPPFgOG0d28CA2p5puvhOfvztcMINq7eC5RBN4YKMsqhrN5MGxoZyiozweDFge0HrD58FRm7fhMp48sHgXG1PjxYPO0cbRZ348eHDu1Pf9ATxoSleeeokufHppLvcoD8SGrI9uP8aDyyurJsyCeWC9PKR9TzgPLu3fUPMuggc859VKx6N5UPWJ4hsdx8PvuKf1mWfwekTm6ivUk3b78uMEHhT/qRRjJ/Kgdz3pewDqCoemViXz4POT+Z31aThOTelJuws8oFv9DF+QxYPgSJNuhUs4nnT/pOJlHqjuMX1tkcODn9+2Tc+hr+410LZcw/zV1fN2lvNAISLHK7WKB8vXKxmvr+NB95frzuL1PPClKBFeoqUevxkxd3E+jRwVWjMP5MvV5zfe48GuC94N7Ic8OM+/YPjqMT6nuLUovIMHCav8tLd388B8ds6J8ZIHhUenRV+/40H8evkiy/c8ODN6Upz3mQf7vVQ/7R3jgUlZ01bGBOa544995zesm/FT0oPvPHhxJoUZ8xPz8fP9ou+oaEWazdA0D/YJWA3IzPBg77XkfbfmeGCoGZrsIsCHLQc+LyOjpNn4Jjq6MbLElY36VyxdWYWKZ3bHEQX5IJbXupYozIdXT+pqjRfw4ZNk5XcKGigW9kxvIR8Ems23tYvyQe7D5+g2MT7QxM/JUsT5sMl3QFxUgg8nQpJHL0jyIT+v4Nn7JXzQij68ZrE0HzpHzh0ZQu/nV900leGD36p/WrUr+NAaejOtDj0aLOh0fxUfZhhuS3Nk+bBiKmLxmtV86Hs99Ysgh/9e75E0K8+HiENLW84o8WHBngc9negF24cNL9Dd1RP359fyIeTC6XoDZVTuuWkcWhMycVFOhQ/uX+NejKCVe0l/9Nbxgbtxoba0Kh8MbIMiHdFLemonzqIPT35Vkdfkg3AeiTOINql2u//U4oOpd8nKD7p8WHxn8oOaPh9+/mm63mrAh9IF4VPvDfkQ3esk+2Mzxrk+6Ot7Ez681D9yLNeMD05mSn8ULPigof/FKN6KD+xnCqxkNEiosjAdNcg/1FJqjesIm2hsRn/pxe0k2eDvMUsMh+z44BsfQjdy4INrw69VMU588JEzKNfeyQfbom11Keg/oSDnahc+rNcePDZI4MMX0VFDITKuUyFTMIDFh/7fB4tWszE+wW8eLzn43Lfet35cPryj+axfzsO6ff4cuIPPh9WyNcdd0F9UBzUq+up8ZywDzXBe/CwF3bPmm34mWvtz25Kq3XxgYvuBKx8aTit6eqDn1lbLr3Pjw1hh0HE1dN11MznzfXy44rP+Tcd+rP/3ue8b/fiQ2VP71BWNuuW90t+fD2EJJVZJB/igKv+v3usw9tdAXENWIPYb56VrF/qB9M97+AgfRJ0tORNH+fCMabbK9RgfvCYd5SnHMa5Pvteoobhe7aWRAWF8UG9y/ZyDyp7/YqATjv2kObZaDz3uoqO1NAKva1g8KdSld8BHBg387JEoi7b1OrvJowcF9qdpo7JXz8rpoOEmZpab0G/aUUUG6AYiI3kz6khY52iCXtP5+GYLykj8sd4Srfgi7GSFui2XM7dFZ1toGXb/j2+c+8AevdkjVeeIhm65Y+mM1vec+bUTPXBDLN0F5aff8yOiWTrbX1HQN+8+uzBQie2VBWw0wadlgIf295jMuqJV433ee9B72qs+e6OWrKm9fujXjBDNQ6iK2Yu4o2i33rxiKCqlG6IXjornSzZHoDJbZAui0EwdU040um+l3aKY/8dLzhmN/T8Oulr6afS28ozGWbTwhOK6eDTKTrg2Ab2yS/RoEvpo19ld59EMzvm3KeidbWF301DjM1EBF9DIBV/UM9G8TSlfs9DBmPOnL6GvHG7EX0ZPc5Wmc9DnOh81CtEAz5TW4v/rVNR3uhQ1Cp8RuIZOE3b/qkK3nSTo1KKshYIZd9Eag1v9zejlcMcSo0g+9NA2RJii++m5Wyz+d7hmkQ0qm3c3zR49cnKXIw81JO6Kaorhwx/KS8O1sXxIvLtCUgsdHG53ykNt++jk73F88NTIeV10BvPBc6TdjudDy4H8LOMkzEtWNiMjmQ+K6yUCl6XyofjdAZWZND6IaJ0IsMrgg7fGC+0V2VgPQe7gGnQw52CO3WU+nL0dsy0aLUzy5YnkYF+NXytcgR7kHQ2WQ82f0OTH0YpC2vB3lLFh6tUcSt9Y8IeYy4dy4UX/qGjIkqYkNuq3uO4NH7UQFfSIRGM37TgfjVYE5t+LQ7+ZPvFPQPNaVgefR8s+aBy/ilYGzPc0okLTFO7KPOyX0kYZeXT6TUAMHZWvvXeSi8pkmCm0oCv/qk5pXuFDl+mJ1iE0s0L2e2ABnmva/b9NC/kwp9QvHlbMh9dTtNDLpfg+MZw/nYsSmfrxjGsYf+Ng+6YbfLAJ2jNofRPjW/7ublI1H3KSl0ocuMWHNeFed8/UYJzjFw323MHz9Gf8vdxG3KfHN2cua+LDR8Mnvsro3+CTaeno4FuD5X0oOOAr8y7mTdnxsy8aHZeQdLQZx+vw7UlED2VEVaeh0/YBb0rQymM89Zb7fBgxillo0cKH+QMNnF70RsLA0sRWrIvDmVUObXxY/sfl/eGnfFhrzrGKRg/pBVzb0YN98V7r95vXfGhc9nSS/pYP8UsWuij14br/np2W7cf3xJK++tB3fNBNDWB8QgXKhGiS77FfXh0tXoYGmJPD/6uwzsOpWrsAgHNQSQNFqIQMZchYhpBlSikSRcjw7r2PkiYqcTPPiiTpdiUUishQSgmhzJTKWIbMpSRDJRXf+v76PbbnrL3eNbznCKMLO069uY3W1NmeWNiH8+snvDS+H+8Fy/saD9CcxuFO/QEX2MXjIVWEus82pJaiLiPjrbqDLvg79WrSqiH8XhWpFxoadgG/0o+/O0dcYD9H24qMUfx/cvXGrs94zysEze8bx/pPhHuPfHMBcaN4A9tJFxCOPcK+PY3fc+29Ei9+Yj22Sb/j/Y3v/SJ8uO8v7rPL6dl8DgK+pt9cx9FwnV/PfTkJdJirKwaiQW7keijaOeH9z3m0ff/2qYvoyvEPe6fRwj+PJWdR9f2vk+dQcpovR52LQGa/7N4GbgJippqHliwgcIxb9N9hXgIvLYxdvZYQCObTi+dZRmDtyMDnLn4CsS7+/r/QN4pNS88KESiqizMjYgSMvyTPNqAlrlnNi9cR0C+s/7AMjZYflxRC79y+mySKxm1q0NeQILC9S6dsAp2dXhG4URKfbzBx00O3tw++OYrmju0V9kB32p/XOYu6pbj0nkMPN/1XkYievuHbkoG+V0yIakXTb8WRT+gv+T2HhdYTyLlUdnelFIEf3fZdRJXA4NT9i03qBGa05UfmNhOIt+wW+UeDgM+EY/CoLoGv/SLKoUDgA+/xXpYBAU0NDwt99MRTPSVnVCCyo/cyWkCft81EEzTDH+Wi3Fv+dswbEng2VjHlZ0xgaXr+Sw0TAvcK5FKW7sS4c0o+LeYE3KMk0tr2EJBha6vesMR6qVbX2e4lIFegKK9nRWDh+SUnt6GyWWEmDtZYL05Ws6cdAdvAI+GtqPNUdaWKA4G+D/uCrNCX52ZOJztiX0e03vI4EXB83G7TgvLtWyX+Do2TtfLsdSbQ+HVe+YwLgR2zc1U+aJ6YOSsQrYx+MxiKJpUtlqlC5fRfl0sQjBedVaCAnn+v1b2PItAl9e1FPE1g0/jW2C2HCJj2rRBIcidgF3FgWtWTQNVG6YS60zgnxw5afEYDl8nltp8lcMXwVE+SDwHVZ1FidoH4d4st6zrKnbGj4FwQAU47V+GnqKvhEW+JYOzb2l8W0qjeV/G2jSiXvEqEEirK3iOjjv58tqCj+/+qSbhrhBB4kTJ4XCwU47V4R/FEEPy9WdniH0PAaXXpSs5LuAc7jvltQqcnbVh0HIFuvySla5cJOHgS2VXxBAzF/Tnlr+L5xwznWlMIpPWLzK5OJXC24p3RSVRLe4/KWZTWrfU7h25bdW0kCK2K87PjuEnApuvUhmz0uNT7MaFbODe68hLGqNOAyRkzNF3xlnMb2mnOkdGNqrXoN4+iVZuHGpbdxvkWk5JzRLfe8ir5m4l5LclYfz8L83EuuGNyF8+lNq5Tl02g98mygaO5BBavzU9Mzce9XreCVVxAoLpDeunAfcyrMr1lQyHeCxP6VPZDrINLVs/3IgL/hr3pFH6C+/Kkd6krej9dMr4e3WPstVKgmAD0jwdYoqXVIua2qLBG4fbXTwmYPaviVCglcEhjUdXqMow/VnI4GI1TibaYeIb7fLIx9nU5AfHGP1YdaMRA4JKwCgLNRQFPWc8JzMU8KlV9QaBWZZ2DdS2B4tWutXN1BDwCFfJWNOEeHeE280YLf1VFt6Kq9lPjOs0E2jQ88lReY59eBTC5bwiYR+367d5KIEWkJ5C3jcCEUul68w50l9vKCPRRntVxwXcEFHW9ulLR4B1twVbdBDKc/62w7MF9yTj8rw06tNVe2PID1sHNQN0GFT28ctoBTaTVnGP6CHjbqYw39hNYva/8r9sA3mvSHI0yXwh80j74MXCCwOTgRh/DKdzX9jeV2tMEAmRM+abRgVytE07fCbxz64+cmcV7rDZZcvoP1rFVIyJtjoDFnegJYQ4KzCYFtiijzBXND8EsCrIWWX3S5aLgrc+WKUO0cOFURvxCCiJu0KEmiylwH7pWLLOMgt8O74zFl1PgsN9nMhn9L6is00mAgsqh5oZ9KykIjOcILkTlbYpaAoQpuNa0jne3CAVrTKs5wlCDc8TqxhoK7B7wpmSspYBbLCG9Ep11jDBvlqAgZGObTRuarNS5ZY0kvvcqV6QqaiMxPpyALjX9+eWtDAVrX+d8895IQV7jAkpKjgKe7uNqGugOucDmxk0UxG8tdyFKFNwviJVrUKGgl/vHpQPqFNg6HvnxWIOC13zca/U1Kag5VBbep0fBlZN/+iINMe6XT/RX9O9vBcnvaPtghG6hEdYpc3NqEXq5QT+iBH1BORo8RzdaO/g3oxedwkYNTTCfry9CdqJdJk/m122nIJH1XNsZdWu5x/nGlALzmagy9m4KTumYu5/eQ4HylNdub2sKMoutbt9F9bi5WyT2UZBRPMh93p6CSA7Z/k9olJhry/aDFCjU5NX2OFNwrIhcMHKhIH34+nkegv28ocMfirpyZIo4UxQoPtDbSaH2Pq+yXdHmuYkr7ujZEq9iD/R5j2mTF/q0uDbEH/VOfFoRilZXPMpJoCnIqUk1TUIVDxk03kQrJiK5O9BboerlPaj6wxPOhgwFvm+sfK4cwvm5wLdi9Qmch/IXb+U9KAjQM2bf8KRgystVIu4UBYLaaqkHfCj4keOxOtePgtAmv8pJfwocfer0BQOwX74JK/kDse/DgwaC6OKfq0xFUd/F14fF0cJ5J2kZdOy3q49jEMYVGfzCoNouxrMh6Ghf9qZelOGjQwZQCevo2I+o7LARjKMbxJeFT6Oikuom9sEUXLAYNglGb9uf6QhHk8vlK2NQZY8+hQx0UazpZtEQCgQyYz6Joe29Q/1FqF9lWJlQOAVBNW7njkRhn6fWKRpepqDWwlDyagLGO1iyrhiV3N+XznOVgvGjziELUzHP0qNma9BGKfVrOqibhl56CerQ2eM+irJgfmoCba7bntlyE+stI/eS6xYFR6b0sxajLEn3ygRUu+r+Mvk0Cq7a881GZ+Ec62ieuYZGO8jWSWTjey/Zinihx4U862VyKbC0uPEkC3Vdr0u48ihYd9a5emE+BWnaNkrPHmLeISH5mUUUfFGWeG/5GONf9PHcUkLB4J3yNZ9Rd/vEc1XPKIiT7q7/iz5+oXfrRDkFcDBok3YFBY94Ipvb0G2F9kI96IKY468FKnFftyyp76iiwGq4vr+mgYIYvXsabi9xXn+JPr7SRsGen8PbjNpxH67t2HwGzWGrOK/qoMCJfTh65zsK8l1FMpa8p8Dzsi6ndhcFCQ/P/dzSS8HCviEOHVTSQXyzIarH+VamGWUlFqvYfqBgr6DHTns08ZtTZkAfBWKnnEYj0LSHTx4ZDFDw+UvU96dDeI5aeSWZEQqMV7ytjf5IwVHB4jtZoxR0Drxw2TSGfX31WUtyHOfln6Bp7e+YL/+W9yd/4HtSeLPSf1LwxGH3w/e/sA+TEh2ZHDQo82jX30O3h7cKPUSHBnisi9Gbpm653Jw0aD24omrEoiFpa51UyEIa7rYmtEzw0qDoyFchK0BD5cy1lSKCNExG2IrYrKYhx+D4bjVxGuqT9L4fQFsdqvhr0Zr+RtNACRrv4w92F6VpWFnw1F1Mhgbx+rrkswo0GJQuGHRQxs+Xtruw1GkQDb55tw39xv5yY0yXBifvENtFhjTsPtwX0mlEg6rItT9zaNdIXeZbYxoEDSqN+HfSsLV/E0vNnIbTy1w2F++hYTpsML/ekobUou2ns/fSUGK6a+kgeiq6J1/TioZXYa3au9DlHH3xhrY0HDu5dJ+iPQ0DZuKTj1AzrnodLQca9OLUlpY70UA5Hni8h6FB5Zh/0WlU7+DFh0PuNKwyqdyncpKGbTtlrSU8aLj2j7/Teh8a3vbc5Yvyo+Fe+GChWhAN+hO50aaodNDosd1o04+bvFYo67LpMTtUrmkm0hkdCkir2RFCw18tFjmPvuXl9AoIp+FcrNmmZ6iT0Z0VKyJo8J3hU6qOpEGA9XKRcRQN1aEGXxfG0vA6R6PY4zINsQ7mzhaJNLSY7766PAn7NKUF95JpmMgLlBhMpeHdjKrasjt4Lj2S3phJQ+KZ5Vp/82jIGs5iXbxPQ9jfnXlpj2i4zBVkd/wJDaH3xr/pFtNwm7Ou7XgpDWsdYjj+K6OB6VF2z0Kn/W7Zsp7TkDZv7ri6Cevy9kEreYNO8NvVtNLg1as8xrTT8LxYXiy4E+erbPlasff4XNHP/koXDb8uGth79dLwNL1ZefkgDYurhYMlPmH/UoPCTo1hHjcq2GfRX9Pdz43HabAxbtmoO0GD9jepK9cnaQjvn5Ee/07DB8pgwvAHDeWqlqX8v2j43TDTxDlLw6Bl5jPfORoa0uTDH3IwEPjaO8iJi4GJOyGpgtwMgMRhh0uLGYjcVZKSvoQB6/O2++0FGCgMtPavEmLgvx0pqZzCDEw6Hl3CFmfg2EAUeYpOD+3P2LqegZ3m/Lb70St7uVMeyTFwSH2H9ZQCA9o9HHNyKgyMLQg1sdZl4GRtqiPfNgaW286fENVnIKItL9vOmoHVUd9bDtkwMFWzoMbMiQGpS67/RbkwsPkVr/w6moHrkj8r2hkGZhfdki13Y0CQsXqQeBTjaze02nngeUJnjGo8Gehu+C6Y7cXAu/ECYzs/BuJ0M05n++P5/AxFhEIYqM7J9/S7wEBo9XRG3nUGtkT+4F2UxIB4XIMOhebMKWg3pDDgViCvkZDKgMaNDtnZmwwMyNa1VN1i4MB0x17+dIznocMRdgfPzyvrcTeHgeCDr+o07zGw6ObzWcn7DPh5cJ07gDoc1oodLmZAFRJlREoY8I/4zMSUM8B37J93glX4nnDpadl6BuabaasHjZjP40ytrhYGCrL9W8Y6GdilJSM0/46B5qZzPOvfY10yLjQS9M/xDYW3URXf3YfSPjAQXTm8K3SAAc83+vKjqEmMaEn9IAN2YydPHvnIQNQMu9R3lIGyrcVyAWMYp/0if/1XBuQtFEZejjOQHOK5/cc3BlJW7l9jP81A5pKBzVLfMV8P1laNvwxwXsr36Z1noEYqnengYMOasvsL2lls6FTi1s3lZUPO+3uCfYvZILDNJLtMFJ9HPnbhWMOG4N+di9LWsmFDcd3yH+vZoF7D9Slemg3P9zCaIzJs+PJ1LctIFj9/YJ3TBzk2CMfHTP5Beznb0+/Js+HWhqQQTSU2DKk1mn1E/0zUTV3dzAZf/jbbPE18LqNU+0SLDf8D6gXLjg==</binary>
            </binaryDataArray>
            <binaryDataArray encodedLength="16004">
              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
              <cvParam cvRef="MS" accession="MS:1000574" name="zlib compression" value=""/>
              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of detector counts"/>
              <binary>eJwtnHVcENkTwBdb7A7UW8TuM8B2EcXE9gyMtRMV+8y1u7B7TQwEbLFYUawzAcV27UAUGxTP3+/mu3+9z+6+mDczb/qtoiia34ztmqIodqWN0uqfb0lrJTXY9l+rLhsc/F9rpnTdLW143K7/WuX8Fvlut9u/VfqNeGvK9+kXZbyyrSfv566VftaKmsx/c6q8V4KGyrNa9Lk8m+kqSz9lRCNZz741WZ71u6eY56jvTmk71wCu8hmlNfeMp62aKOurg4ZukfFq3A7gdJFxVtdHwJumGd93DWLeyPSynnbZRVq9XGbme1dU+plpD8s81rMEgdd82FzGGb7zwFO3VfLd/JogrX4qmv3dqyPfjaIT2MeGL8CdOIjnJODWjzKP/uO6PGur08t4fUoa4K1ejfX+vQhcLrVkn1rWjvLealaWdX0WCbzaghDmqQdc6usK7H9xLfD8vTl4yZ+DdeY8o3/o7c3yvtZp4Onkx7rXNjKvO/SxQ8uw3pPMzNviDXh8FiTjtCJ/C38YUxbKON1y8JmjPPgLzSHPRhsVfJy+Kv21E3uYp0gv+sdPgJ++PQLeQHfgiUoPnZt2hc96pco66rR5Mo+93XWvrBsxXuipmHHsJxx41BUFoNvAcvBfSnfZt/Z8KeOL12E9ly3s0+8E8La4I/Ma0ZUZP/c9eNlQUfBgNHwF/6wMZ54uPgKvsjIyXJ4zhEs/xXVvMPvICX+0bS77sQb7ynxGz7+gh1KP5xIdZZxuLwuR8d08HXzuku+KlQo8Yy4KvMbFZzKf8tIdevycAt5Gj5HWDCkIv89eJPParkng/Y4ndKi4gfk3e/K+ywHwnLcO/XP9kvf6zVa0rVM4H99eg68tm+G7sTvYR0bki55PA4+LEsHLrfXw/9aF4O+DJ/vtko91olqJvLESSjMujPWVf0rDXzk4z2bqLuCYtZp9V8nJvD1ucM7fzeS8bC0gdNa73YM/GuyT1jq3VvpZHq+Bc6ufwK+lvGcf3TbKeCPnSdb55w180yLNPlnv/SF5b2/rBh1uZAXvaXTguNEL/JX/U+DX/l2xR94nQn/LmCB0VYPOss8K7F+PPI0c7J1N8GA8W4/8KzsW/IW7MW5UsLw3A/Iw/pAdKu3XDQK/ndOL+brdpf+6KfJdazAAedt3hcOHGQQf6mn4zTA85Fl7vxg43IdAn1V14Ltt/WT/9kEXgccakkbmN2Y3OizwJE6EL/LUF/jtXSPlvRbTGPodfyJwWMNqRkh/10P7Bc5XtQ9Iv827wdu6G3J+jFfjwVf5Pkek/TyR9ZeZ7EcJkvWtrH9EyvOHjfDRyzSHZPy1NWHSLr7IvrZoAof5bYjMp9QdJOuoLWfLeOOYm8CtK5+g97h0Ap/2Kgm4NAU8VQdveuBH+DMpDjg27gZvXu6WPHv3ETiV5Fv027KV/Sd1lvF2xfacvwV7kJNfm/BcpC/81/wPwbPZuIa0RqHa6KeqxTlnHQKQl3n3wQ8TLgif2YOZz+gdy3mwPTkPdiDyvMQc5EapUcy7bBb8eyoG+umj4KtCbrz3uAAdMlaR/rrXGeBNM5/xjelvVcsEXC/+ZnypGcDbI5ZzGpiB+eZWRl6q3znP02qjF2LuI6+/ft4k85WLAN5Dm6DLkt6c191VgSc8Cvlz9xH0+Z2BfU1vz/qth3Ae/tKAY0YC+PiJ/NODd7Juvv2cl7QP5b0yfba0lp8Hz9lHAHdz7Bmj6jjw1L0D3/cFoRcN6KUNa4i+mngQvD8YCbwNjyNnpvajf90/mWfSR+TzT/hdWboLftndDj3h/Uhae09D9t/hHXhZ/Cf72IE8tAJyO/quNfPEoxfUHuhV9dU59JzdBDyUvw5dokuAB6+36O9GQ5HDo64LXGqdJ8CZip2nV9iPXJiDvrE2jZP1zVLJzBNWBHwX+cR5mBOIXJ3tC5xFG0trbIPeytbR4Ld9c+h2rh7jatSEr0Kyw1fDqss4teMd9j95jGM3/EYPp4Yj3/ZXBm73eeB/lQI+nnZnfInTwLsmALpHzJL+VtpD0l8ffhm5vbw4dnK7N8CR/A28le7D/lKSmeffCOjQH76z+t2GT16v4fvDQewvdq6ce6VJuMg78106+Pop9pvpOR27e50Db2gWxjcL5nuLnZy7AM6bur84+qFNAeyeq+glfZ8vcH/Igp77W+EcDC3M+xtN5fzpa5rBd6k72JffefinY4TIWaNNC+T2+0syr7L9h7RWpSrA4d6ZfXXqBt6DLzPP0TPA1WUvcIe8h66WDV5vHoLuHdin9WwB53bZUfjxUUnwuLQ1dC75Br58Gor8zf0X9ndd6G+1Tsv4npUZn+cd+FgMvbUptZGnKdjd9qoEzt+k+uD5DHxpHwhnX1fcwMuxGsiXmsuY99/Lzjnczr6nTYYPMnIe7PETGN9/KecsXUPotCMQuLMdQT8ld2Q/yk328eIzbaXH7KcO8lhd7oLdsLg96yUX5hwdHgRdh8C3RuRQ1ov6Sr9f8eDXvwf2yDL8DP36GKGnuiEa/vx4inV2Yldp1SLp1++M2E2WEoC9tH0b+7LgA210OmkV3cS+yOQDvWt8Rg+FubFOw5fwRVQB6W91Py/8rqxdCl6ureb8+Z9m3Z7oGc01DvlXtT77dRmP/AnvDJ417Gb94E3ol+UY+w/bAD/lQS+Z0Yuwi8rPB/+3Q+En/9rwf3YX5t+P/DfyYJ8prW4LnOpHm32/rgN84VXRzzH4R+r8UOjfE/40nybAN/dK0H6+y7gjqcihmXmRnxfrAeedUewzJRB6lW8Kf3R2/K08g2Ufeoad4M+8xbrnywFHx2Hg8ekq+KF0J/jho+OvFI6GXpc5Z+YX7FX90EJ5b+yoCl5r3IROa9rzXKQq5yUOv0z/WA46nbzKOV6JXtU/OnKt6nbsqzv4m3q9vNCj+2Xw++QFcmDQDeTypGL06xoIXPHITyOnB/wzsjz278tJwLMiK/uczLm2huyHTl9GYO+k7oQf9q7BP9sBvewet2Re5dIX8DMKO916EcOza2PaNV/ZZ6aiyI3WFvB6xyJXQs5wPub7I599kGt273XIg/H4qcq8Qc553sLzZOwL7f1QebZP9YL/87G+UfQqeBy1Bj9lyRHeZ9kEP75bwrhg7BL10GJpzduO3b80K3TJUxI6PC3I+j3vif2kufvTv8gj+P1lAeZvuw36xGLPKWvwJ7QPY1k3pIjYxdbuQ058AjmivVWZ/09v8BMwgHUL1UCexP+LHAjQoOuAz8ivMUeBsxN61f4TP9lu1hK+u9lW+hm/kS+mN3pUK/mKebq9hR8exoHveivh/9alWd++xz5eAad5diFyPsc54FHOMm+H7PDTo+/Q/W0Gzksy+kudMYc41wrH3lt+EXzFFRH6GBeeo0c97zjya5rMa/SPwp59GsQ5DujM+V8wF75qE4W/UAY/X08cK89m907wewXkibEWv1iNwm4whv/C/lv3C/smI+fPPvsMOlziWd/Ui3XTFmD/eRz7JuAl+xiMXDFq1KL/B8e/zvEn/LgmF/27jxc6aPEb0UMtNoHX/A+g06cm7LtKU+EvJSEVPnr4GPgvVXfs7N7A60Xc0Gzgx/v8oTKflR+82KXRk3oS/pFRZQR0qRDEercfsK9OXrTjy7JOdDTzNMHeUfPhF1h9iZvZL105x4lOnLJyP2m1Wn2QH5GDwLvnT+RIgyLQtYkJXnrPB08r77L/K8TltDZBjF/PeTaK9QaeEPSO/u40cv4b8xu/u4Of5BeCB2vPItaJzQl+inbh3Jy9Bd+1b4w/18fkfcBh9HPpSbRLFrGfuyfg46R24OtoQfztGtiD+pdh2M+ZXgN/OP68luca3y96Mp93E+Cr+q/Tz4d99pqHntWJeyrrK9P+nZX1m22gHRgKf038B3omwR9WvuVOnKc+dla/QuBnpsK4QROktVrudPRuCOe74XzgKr8fvj+wj/M5+jjrtMJutPeOQp7p4E8bdJRxhRx/bvw55g97Cp52EI827q4EvtkLwEfOesB5srP018tAVzPSi+dJkcQJp3RFPnW5xfnynwbeFmQD/6PPs//EFmIP6eYd9NEc4mbGbWefL3PAp9/aw0fuZ7H/K+Wnf8xp/K4XNnr+N++tbcSrjPXzkX85iU9qIbkceVIdO6IZ8U77BfaddiEL+MgDfY0Q4upGuULg4fBs/JGmu8FXL/jCDgAP1s+j0totwZ+W/xNwdh4Bf/3MgNzrEQy8QwPBX5oSyG2zIOf2CXaecvMddkWTRN7f6+/4xcQF1XmccyvLcs6Bx0nWiWyJ/GiFfrAulGXc0zXMl/8XdDH8gNMN/av9IF5pZb+C/1utI/vb90ne67Vjha6qQdxQ3egtz2ZIHcdv6g2+poIvpecqxsetA+8FD7BeOk/oFl8IfB1SOI/nsTeV0AzMv+sf9F/zgfDfrIbIv0DsIi1rfeabh/zTYoibqq5ePI9cAX4X1QLvO/cDxw70m94NP0uJi0euHasI/GndkXczpsMX7u2Ac9FB4Az24HykDwRP18jrqKu20tYpyPiPs5AfY7ATzW26+ImWT6LE04wz4Etv05q4YK1M8HmPuciz4GDO86MI+PQ6/e0Zx6BfsV3wZbap8Nn8SPpNCua8++OXmfO3Qp/Qusy7iHidubsA9sacetjvB9DL+hL8NcP3GP5M2HXide1vcC4TeiMnZt9CDgU9QF5lby3P2tob4H94edmverUp/vupdtCzxWbi9IuJg1gnyEdoyV2hV+kYiUOqgc2A61UZ1u3aDbvrseMXb/99VObZZxP/zDBd4qdWv5GCX9277Wl537MwdkLuzeTn+hjAdeEy+2ucTeKWVufa0ipxicRZF9XDLyt7U57No8Tf7HY7kW9ffzFuHvEWc7AO3podl+9WSDn4oXsG2Zc+uCvn+tkRnjfdBt+B/bDzx54n3lUAv15PQk8a0/fBp12joPc24l1aj7nY77PRk+qsg7Rz3Og/H/4xzzyDj7st5Ht/h49G4A/ZBcg3qh2aIlcaVWXeSc8dOp/BPqhxkX2Hp+F7jlcyzkj6zX5yjUN/xf5Gv4x+xHvd8d+6Ez/SluGn2N0Oy3dtG3ag9nYcdt4i/FGtOnFa1cXxm3L3kvdW/2Xg6zX+rnVsLfPmI76hHcdPMHfiv9k+5De1IOSYtbISfkqxP8Dvhmu8z3GY8QUCkJ/F+8B3xQYQz+hGfkbZh3ywhgbJOPN4APb1yAeOvirB/KOqwRe/mvG9xWf2FfgVupcmT2t3hl+Uevj52nTyikrAO/bht5ZzMDkJ/pkUhjw7cZpznZhCu/QY+xhUDPzUHivnTDuPPrAqpUP+efWmrbwOOfvNwo7tiDy12hPn0rtcAM7QSsyb2Aa51yEOOZi9KvtL/5Pv9aag57tkA+9R0Fd9uU5a/UwKdlvfnuxjjgdwBbYDX0/yAc+iJOT8H/ij2iCHv9TH0tpe+Mna50qOP6XA56ePoxeW1YI+o1fSr1gZ5PvhmejR/lfY7/W6Tjy7M/t+OQF+KuMt8kSbBh/aSW+BxzMXdsUL9Ke1JQ/yoVoy8tcthvU3oVdM3yfIb/cRMo9R8Cn7nUQewaz2D/hqsxW+aZUT+dhzH3Dn5nwqjXezngd5dmPzDuT3qgjo1Ccd76cMAR/PHb6ac5v91dGhw1vHD657hX1U3g4cefFn7OvJnIet0/he7THrfHiM3EgmH6S0fEr/3Pj39v768mzV++jEI2qgh+ZsZv5jxIeMNJ3YV5dsnIcXUfJdWTiMdec2gy9LEJdTIrBHtebY+/bYTcDfkXyAmpBP5L/teUHkvnowe5yMm4s/oR08AR9+dgG/6/2xOy47+IugPsBs1gC496wEzvBGjv506iTabYXOM4LBY++C0hpndrKPpUU5t3W6OHbWKuZrfg/7cwx5e3MqcGiV2IfZ7jb8djIc+TqJeIzxbSrn/gH5d/0ZcTLlSHnwk7EifNOuJXhrOZN4SB0VO7DxB/h8Cfrfnr3dyUMg981zI9inib9qxJOHMF26se6ZAvBTopcTBx8BP12Z4uQ1l8PHxdqhJ19yXpV5Y4Dn8jT2OaIf8aaqmZjv3GL0/iX4VHdpj/14oxX2ReQ64jD159Eujxb47G3FoP+PlqK3zar1sQ+ajL8o8524/lm+77/B/upmR+/WJk5k1QuGD743gv6vxkLPimOBuwbyxMyxAf/en7oGzecO/D5kKfPmg27KCn/GeV2CHo3TcQ5TgkVuKJWQv8o67Eor6gfn56Ym82iei9GPxRw7eo+Tz6zn6O1k8qd2jAvzP0Vu2GsM7IJp5CvUfE8E/+r5H8zz+q0Tpx8A/BWfQNekQsihsvNkfaWkk1fPfhu5NXkP89x06n4Cr7DvpeTZzRz4y9ZG/BB9FXlr7X4m5jHI8+hNO+Ofla3LufhgsJ/sx1h/9VzswFvIM3X9qmPyPGW2nF9lxjX4KfYwdnPlpchDrVSUfP/kDh8MyQq9moTCPwtrwacrnTqK+eQ3Dc/rsl+7HXEz1SfbQWmbVUAvziqO/9nhPO+1j2I32ne74uel1SUvbkcVPQCeyfsZ+bo6/h11Heo0/H/D+unoo2ayrvE2nn23IT5pf8G+spdSL2Jcr4ScSSWuY15w8kELRsFfTp7BKLcOPGsG8NbfTV1FP/KlynniHfbGIN5/w69UG/jKs+5C3lcL2yn8qSd+ceTiXehUCbvDvrmB/P65aFnH7PYZfRb9AntiYix8PTMae6SeBv4fRDj+dTHW+ee9nE+t1wH8mYHuyDm/utj5xV4jn4tspO4nKbPAaxoVhQ7mvoPyrC3oDpwPiL+arYFLz9+LfV2rgT91eg989foi9Q4xhzgHMd+xM9yQa/qCBeDzZ3vqFB7kJM7Yh3iFfiUd9GhXT+CwvRNlXmN3JHya/JJ97XwrrbnIxn+YRlxQH+MCfiPchG+0OavwN/6+i3+S4xz43kp+3qqYXfje+HVB5tPbJsF/makrst60EDgME7vJmL7ouOynpqfUS5heA+S7fnSq6EGrUhD+yPsXJ6W/R+/jrB8vz9aEavJsp7uCnBo8HDvuyZ0z0s837oLM1/PkWXmfEs/78mdlPeNaWsGHlUcTuO0pX+hXvvklaVeOl/62fw7qSXo3Oi/PmzyjZd+xpvSz6ua/Lu3BYfQ7u5B5B90X+KwVqexv/x6R71bIcBmnbmkk8CnThss6yvjyPHetdFPWyfnjnMz3JOGqrJewVfCpZepxTca7rpd+SvsdMl5tuJl1OhS4IuON3QKXmeGs9NM714iR+T59p17mXoTg28p2j/FV/pV9KVeaCpxayzjpr7baf0PmiY5j3ynvWLfdM1nHSlcLvOY7A5zD1wkcypRq0s/o3FveWx18pL8arsj+tQEDZV57+SBZR6+D/LfTBsl4NSgIvEw7d1v6Tx0g9pAaknhZ5mt1+448q/UFb1rTPg6+0rHe6a7/yHx7i8h+7GM5YuX7lucCh54KHrWGI4XuxtsGAq9Zs77Mr7QMlWet0i+BU1tb4LH0a1hV+EBbGXhfnn/9IfPa3U4LfMb5DbKulTcCuANSZD2t3N1b8t3P5YS0JQcC36414P3HRulvh7UWuqn90j4RONNmFL9fiasMHFvGM0/YyUcC7zH/u7Le4jQPpd+Dpa/ke9zl1/I+QzrgMmsJftTmR9nf2bQynxIyVeZTund+KusXLCd41eeGCVzq+TSyP03tKuOtawUFX3pgIfigVhX4rcUxwbtZlP2Y2kzgNa7HyzyDL4jcsX1ao0cSOoMXMwH+OTaZczRjvsBrVfxL6KM88xR4zUeXhU/sUmMFHr1uXYFHGRQdJfMtDjgl67QJ47nyQGnNWiegY59QWd94NgT6ndkqcOqd6sp5VfoQb9HskkIXc26sk1cYKfJG2/FN+ukFi3HO9syWOjatmSd0NLOK3DLako+2rXHEWWKbIKeUEoIfvadN/VuNQdJfD0lD/77TRW5aHhVEjiirJkprtl2MPgjaiXwc+ED2oV1cjZ897Qb2TflpyAeXTzK/8vQf6t+2vME+yNAePdPMV+azP54grlRui8Cn5r2E/ttaU/arlM2FHTNiGvvuaUh/dVZW9N6jtuirjvnIF/aJpp3xlXO84RrxqvLFgKOFP/pnwgLskMpB2AVfZqAP5zVCz5XyQH+s+xnCPDGSx7cruWJHtQt36tP/pr83+lrN3RO9FD4LfIZNg8+altkq8BY+RL3jw/bULcwaRn3vDeJ8+u906M2k2WJnq59XEf8Pd/LA6U8SL5q1H3/Dj/ydmod4u70Lf+v/Ag374sYK7KSwEPT1sUHYDzlU/I4zF3hv18VfONsI+3hMPOulKQJ9m6Pn1TTDyKeNIV9uLyD+b/cqCR6f/WTc8nj061+h6OdclbAT7vcBzmHEkZTxE+XcGTnIL2sZyOOa59tgdy70Ah+hVfF7OhIHVT5mxD8o8A/9Fn/AXopMxJ7SqHfX1kdAhx654UcjC3hOUw789cIeVMtTR6yUSY8eX9wHPJQhH2dv7I9dmom4uV2dPLTa6zj+aDJ1PNYCG7xUWsY+uqrss+wH+CCNzXybnDr3zvnxO95kZnydwXK+lO0bRF6ZSdRfaRXCmMfvFHTb2JLx67oS54soz/wZtzt5Yep9zaZt8WMql4UvLr5knFtR8FKS/J1224lXKD+gr4vjX/ZzwZ4LIl5hDSe/YLyNw181iIPbq0YTT2k+Ff7yu4rdXn8FcZ8S2WWcOrEY588/9oG8b0YeQ9tMnlypkQs5cuIYeBmnyjgrcDl28N5RzDuJOIg6taxjL6Ynv+l6Cn+m2mDwPG8icNUnz2icIs9hq8M4x9V9kSPNhzp1N0ugW3kfJ65bCDvgt83+O+4Crp8rZX2ztEW73skfJzUA/knIU20G9cSaL36t2ekudGjuxLXqekB3L+q+tMQMxNHvlEU+VJyDfPi3PXrmGXTSjryCvtc7YW+W3wLe+1MXrdaD/+1s9aDXSfJh+gUv1slEHax96jXnMiwdcCxcxPtxxLGMjy7Y7wMaOX6vQw+1MvZpu07w2wvmt7zbMt/alfhRl4i3KK7Et4xnxJk0p97F8OrCOVtC/aHdhXo09Ug+5EZUeug7walb0sfAJ6GOvxhbXOa16+LfGh97iX5T5zj16vERwHUH/926QR2pnnsm+9m7nPnGU4ekH6UuXSuPP2Y8vuTE3ajbUIdTt6G5PodPmrVGbxT5Cl3SlWSfQ44T7+6UD793NHECy5fzbHcqwP7i5jN/Pyeu7dTzGPWpgzPjfznxVEc/nSQOqISSX1d9L8JPt4jzqUnu8NXSF/jD7kOduPEH4Ns0kHncXjvnvy364cNUzskC6tSUgJHAG4vfrfz5iXVKIfc136vExZqlgqcw/EJdpy5EH7IEPHmWRN5uGgzcflWAs8c4zusY4oeq10PkufqUfGgF8itq5gCxv4wfgXz/i/iI0of8vpq4lXMd682+BqQSX7k0CT1xuB18s4c6NvXtAvR405HEV0ZtQH/7jGP/p4gPG8d3EBdagpy1PlNvpc4YAd3u/wn/tSXeaj/nXprm7dx3uk09lnqJenC95SiH/1ZAn9e14bN5xE3tEleJd9Qmn6p+WwZ+hlMvoyacQd5O+8J59OGcqcfrOPVO39F7+aJEXulhgdjrNn6Lvm1JOu//Hn3x46z5h8VfMb66gYce1AmYi946ebK0yJPMyHM1gPiP9Y57StoV5LQxSOH8TiLPb0X/Bb5qIHfNjcsZN70H9l7r6uDp9QHxF9RqYdh5q+8x3xznXuCBh/Bhqb3EFev9QL+VIp9ujmlF3CCE+ifFPR45mI57ZMrsrsDZnrpFozRxb6PkZuRMblfo0sap0z5BXbmd7w795uRnvRtNmX/dEvKPBbax3wfUk9pZsolfoAUS/7A/XUmS79W4T6Bknc05bE0cUI1w6gArEK8z88NXekwP+Mqd+nprJfJN79eY/VQjPqdfoZ7TSAt81vYE8NH0LeOe9IQOKcRDtcbP4Iu53CPUTlBXoXw+g131sApy4FNf6OIZ80y+H4afzHEj4UPP245dTLzeyunEWRunx256Phv5+0ch8tVFkJP26IGc+w6Hab2PA2/HUk6dQHrgiWjP95bk0yzXBvJe9XYDzwNmsN9MzbC3ik9FHpVcAp9k5P6C1Yv4rlVvPeusGEd8O/QF8ujrROj6qbb4rUbVaOSKB/pISVnt1D1wr8+qDV9rf1PvrM1FL1hjPrHu4aHgJd7Jr5wnj67ebYudkTCPOHBl8tvakvHUJXS4g7x8FEX8vsIs4mflhiMfLmzEH/p7MveOnlQgDrWQuKXhQvxPSSjLPNOmYLfFPmTcil/k8SseJA47ehhxwcN/YN/erwzcR7i/p/5dBjs/aT36Zyj8as5vQNyy3k/wNtWh9+dWnJeOjxl3thrzBa3G/pmcGz1f37mXMFXnXM0jn66/McW/Nqc7+dd6k5GPkcyrzMjCvKv6w1d9Gss86vw6+E9T4B9t6W0nTuzcVz04A7k48AjfG06BH2qEQd9lwU69NHk71XTue1zYjD47Sh2h+d2xY8YTF1IKzyPOUWlF3v/kqLptBHIy9gH4c31M3d3XnAKH8oW8nz7MqRsaeRa4c3CfwAzeKP0styj0nDUBPdr5LXCew++39xQBH76twWPIG9bx2Cz+jNEA+0spHCH+v3qC/LPxyrlXEnybdbLvQj92oG7LTDkBPs8+kdbMc87Jnzj+2TvuNVslyafZX7AX9QbcGzMvTkGuxHAP1mg2nPnyXwFvY29yPjdSZ6klcB/AOBCDfv4jUuIk1uAuxAUWXoNvilMPYrWoKvPZOdLTDqfeyNqYC36JQy4oH7AD7HLOfeOWH5H7QV+hy4YbyL1XfeGvYdT522vIYxsrY1i/YpTEI63RPeXcqAOrOPUVbWk/U89hrtmDnulPPtPyKejc0xlKfmwH9dtG7nLA1+UecCnks5VMzZkvkvp64xZ1gEa0E4+v5Qfdvv0JXJsdP+t4M+zNieRHjD4V0A+5h8k6Wutp4G2tcy90cHqxz80z1NGqx7j3qB0+KPE848+TjPegjtOYMIX4e2IZ4XNNh6+tkdT7aavJb6g+nH/rslMvlYl8gnl9Gec072zWa1+SeOJH/Fv9OXXdasd+wFmUOjBl5xFnPPaYMWokcPVuB9+kWwy9Mw1g/LER4Dt4DXD0nYD9OiqMfmm5x6I1Ap/WKewRI3sZ5GrJQ+C1iQ9+6J5exLcajnHGdYQeARWJ+3RBzyu/+2Gf+PemXQJdjNHgVzmDH2LU576ZFc39BOMtfqea8z54WdQT+T1qMPbEuQvo0Z+taYO2gJeS4E2bcYK45yfiTupF5IN5mrp59UsC6/9DPbiyDbwpt5x7fM+c+T5S1/p/wws+3Mo9ST3sLHKv+nXo5JsR+/h0P9bviL+gdHbu/SxezDlNot5QP1jNyTsyv7XTud/ZFH/DateX+NxRV+RBZuyx/xsO9O9ym3MTT72l3pW6Pn1qBuRhn5Pov8LELcztTv6pzGL4aPVw9rsDP8wYzn0pu/BTR97xnwE750innpK8vf2YPJR5vw75llalJF6tzc2IHXef+z5mAvMqDe4xb3vqPvWa+PemH/fb9U8e2OWvufdilkbuGb9LgsfT1AvbOYlrWY6/aZ74hv9TcRb9qmThnF3wo9/5vM79fuqVzV7kwfVKPaCjG/cT1OdnyPPOKSNxZXXYRvbj80z0hH4yHnp4etO/b3Xs511p0e+9uA9mF0feK1edc32lIeNWPkDudYzCrsnAe8NDBR63q8j1jg0d/ercWwp0x597upPxXbhnp51Kz/eE3tx7rtuHvMrAfSmyXkvunWs1s5HP6beKOECV/vCLD/EG+94n+KUA+1KmzmTcXA3+iY9DX11y4kBJzj28ttwr0tzWYK+Wgd/t3fC73mqexX6bSZzKaFr6l8z/LHuUtKG/BS4jZdYLafUi4k+pUTWJPwdzr9b4EM65Ls19VLUw90PsjPCHtYX6RS2/cy/5FnV8epeygl9zAXUy9i/u66jBZ7GL3AsCb2RG+OBbT+hWOAT+3O8PPWInsY+rXyTOqh3MzHy9qIOz8zvxum155JxqJXXRf5rra/Jmg7Jyr35HYfIC6XOTT1j/hjqhMX2JRweT79f8J5JfXTuac1v0gOQJlAXtwMuGi+Qd/hqCno3cJK25O1nyUXrrGPEHzaB04r/qakV5r/QYKXhXV1zAb81ylPjTpUXkbzqZ5EsGkY8zJ/okgoc2Yq/Z7mlqe8s+YoZJu/panf9aY9Ji0Yfar+73ZNz1mWLvacULCj/qCd/IWw7xljySkbqdPND6/OSZ9IkX2e8C8nvLR1M/U3g5+d1GyRK3s69vQc7U8hN+V557EVdso4Cfe9H47f55pdXW2eStp/5LvqpNWfKQbWYRH+5GXlePoF7cmJtF8KTmXE3dlo181Hr3IJ6YNzvy7m01wY8dfv8jeNdyiT17JZ3Em63lK5EPizIwvrE/+mayjh3zmHiQHcw9LivffvRYVuJfdopzvy+fc7/Dg/+9WLm9kS8RTR19N578/87h5Cmb7hc6msVqsf/hTt1ZVw27ZF1G8lv3/dHfK9+Q1/PHnrJ9KpLfGvMIOo6o91OeO8eSJ8s/kO8x8yR/at/okSzvr4UW/G//WqMJtuDxqLvk//Q6TTkvRn/sgDbPydM+AI9Kckb8ghL8T8doOR24kt8Dj1sm9nmNOjarMP+/sTbw3wLj6yvkQ1/iU9ZT8guKC/XOpjd5ArNwKnTINAX5lv2Gox978v+G4bWwV9Sj1Gns578Ayq/H6JX3l8iXhRwgn7ppPOc5Oo/g2+hX+aW89wuJkmd/f+g5EzvbmjyP9SLfIU9iyL/YgZ2RW4GjiEN7fsQeKkpdsXLfDTm/wLkPuoO6T+VVMH7uuvFCP6sveS81TzL03dZX4ifWevxIs34/9FP198ilFP7XYdzfDl17EK+2pjx26ksbY9e0dO419Xb8wvlxwPHriBN3qIW8HW5Al5dB2P+ZXuLXtEVfaM+IixjXnhMPqVKH/fbyAY8zZhEXSB1FnrF2hOgL+1BPqZ8z36vF/uMv3fsbdvelgfQ7cS9B9j2qNX55LPftlArTicvo3bFzMqfj/bsZ4LtNGfIxcdxLUn7xfww9z2ziZAN2wDevQshDGlnEDrfXuXEuxox1kfOeOIC6FJ9OIje0v0ZTV9AlC/jtex96DylB3nr0ebEnzG5/5PxvvNVhDfyf3ot1a9WX+ZURkWKvKj08RM6rn1OQPzkLYlctjwefbbbJvvTP5AWVtdwfNw4Q5zNHzYdP8iHXzEvcg9RmBvD86aScU+NME/R739dSP6DfdP73Nc+pk/Z6Ia1dIhy9uYJ7tOpd7ulYKveRzIP5wXeGLZJvtfuWxf/9Sv5On/mE9sBM5nXhXqPyswfvszn3iKZZgm9r8RH8CjNV8GKl4r9Y23cj9zpNFXmiT+/zTd7n+gv7uO4C4qSbqGM2PkWLnjOi/iVOGnuY+c/udv6bQHzNKN1C4FL2H4Uv+pdCDmymDtfqStzBqDaVvHdqoMhD7U0m9MfCE9R/vmgo+kv3yiX6wS7gm0n0pfuy6v+1ik9rsc9sP+Lx2psh+IdhvZAT4Rb4OMi9Euun87+mTNQ5q1mOcA73j+V87uYetaG5Qqe7tYUPzcLHBU96Bsc/u5pb5LGe7wh2YuflqTJ/qdnUZSU0pD7i7A6JK9ibnzv1TpFiB2jRGUT/mosSkCsl62K3/u3c73Rvh/3u1Z88846CyNeX+BdWAP6j6XsE+6kvcQU1Wyj+067z0L8V8QClCv/1Mj/zXxb9pZNnW0/9sznAqav9mh18nSaeqKc2Yp4SnAu12APwEsD9RD2Lk3/ZtJc4Xl9X7Kq/pmMnN3pOXVrLCvD7Gee/B63+YL9Z1mL3+T7Hnit0in4B+Bfat+PA+RE71YojT2btJU9nFFnFvnJwP8y2nXrnRPLw6rJr0PMKeQKrVxWRq+bOz1IXZJYKpz6tQEaJ/5tdqxD3/hQp58G6NBu73W1nlMDbkrpc020WcsL+hnzfep+46VDuqSq34X87TSdp1U4NoYOf8/+Hyfhh1pDJ2I09ZyL/G1B/Y1deIvyuti8OH3wgLmbE74df35F/UU5wH0UrTX7COBwNPqc7/yW6TZ7S7k1ex/LNz/cNz/GDTk8Hnrnkme1UV+y8Slup+4rVyScsjKbOKMAVPGTkXo32Yzbn1b0pfOrDPSizk3Nfdztxa+2ZUy9e8yD0a5wXfrr/Ab2caRHxyNiZyJmuodR/HBwl61oJi9ED7XNI/shIPcM5+nUkv+gPV/6fZ25aLefNtDug9wK6CDzWQk/soa78d0RxqQ9cBfk/oXaMe8WKD361Mm43bcXe4P2SH3bITeILthdxPit9DM/9shOHyIi/rn//gp3wfaDQV/HoIHJKyz63gNj5RQ42Fj9g4ags0r6vJnrYTilNXWqDVvBB/UXwwZvzxO2LrcR+etRD5LjR9xvy7k0K57Uj//Uzim1GX47gXpzhzT1VM8oXfezGfQPjwl5nHPrDzP8n9m7OtpJ3MROqid2q1IwrIXjeNJn6uZ6Doc8u4qta9r781yv7TPy7wqfFjjN3nBI/VW0VVlrktbH+nXzPupM6zOQIsVt0n+/UgVVfh789thZ1Zy2Tqes76tz7Gf4NvyJjcc7zW+KmasmjyPvCeaBbU+c/gNUXYM/EPCBOsPQTdki+uyJ/1ReXRe7Ys5eSDymzAvsic0P8z+05ZD2rbnbqQzJfEXmh1yb/ZZ3ugr++AjtarbnQibOtAJ5ureDzz/eQdw2Ix+plsKttg7ytEWNuFbhbkHc0F+9hv4+hp54SKXJL/bs+8bdBB/kfUdUq5Au//aIOztNGvxvJwN/7Fed74HfmjyS+Z2Tm/qlWm/ipOZI8otUJOloR3Ec1csxF/mSYixxc5Sp2mj0jJ/mHBaFphX8LNWH+MeQh1PTn5NnM9hB5MyMr/lNmnfOx6l/Oi+dnp16Nc6UEgzctlfy1np54pT6tmZNfIk6n+8TI/IbLaODvdww7bHmUyAuzyIofMs+usdSV+qQXemt/1YNfntWGTnmJ09pueZCnxZ4KfdUu/K9JqX2W8xjbAT4fFSfr2qeomzAyOnpop5Nfekw8VQnGzlHiyY8qAc69wyrES7Xj3DPRRvMfKjW4H/jr/wW9foV7OZrCPTFlB/eY7BddhF+VF4WhV7VH0On5b/D5UQWfj97An7mqEOfK9A68/Undk3J7CXyZtBY+LP2R/dTl/1X2MSeOtgD/TtmCnNP8nf8PfFvH/nx9qQtaHSv+hF1CEbzrV/d6iJwL3SDxKEWnLlP7Tt2YWb4F/D0JO1W7yn+X7BPcW1aSXzj6kbyENtMD/ZqDOKQ2nzoE7YGB3dBtEHaQ3w2nPumt7EefA96NWd2p0+9JPNE46Pw37lBL8L2A+56akhH8RFDfovzj/J8uPfWO2qah9Pci36DkcPIIKb9phybCtxnyM89B8g9aBertzF250HMbuH9rxqYnDuGJPWd7o8e1PMg3vbYHdUuXq7PvGP4LZ27GD1eDqLfUB72Aj9b5QMc3z1nfy0Nayx/7Q39YDnj69sUuP8g5t3biL6sB1dFz19mfcT0jcm0++tCq4vgZz/nPh/2YOjn9NnEPYyLn1BzGf/+s5duZNyf/qbVOkF+xbk4l7hmQBzp8h5+ME6xrHacuTK3i3OvMxn9DdC/sC2U+92G1vtXx526U5l7LBf4LoRbkvpS5BHyprckXWEeJO+vvD4CnpT/Q36upA7CWOPVG355Cz+tO3GED9rgZfIL4ZGWT+TIBl5oZu0otfoDzdo77gFqU8/+jytyL1/9Gnmve3D+zrC/Mvy4cPZKd/41Yu347/Mn9Nes959Vc6Ql9tvG/GvVSTfyYaUM4ryUmOfk/6uz0dxmde2PUR2ivqAOyPzn/KUyTB7j8uD9j3CZOobfm/x1mIPESu+c86gyS/wX+cUs4H05dm52Hul6jHPJRcyXupq2eiD5Jy38mldz8H1AvGbYVvAVA35bUR2laXeB58X+6/A938cQ2</binary>
            </binaryDataArray>
          </binaryDataArrayList>
        </spectrum>
      </spectrumList>
      <chromatogramList count="1" defaultDataProcessingRef="pwiz_Reader_Thermo_conversion">
        <chromatogram index="0" id="TIC" defaultArrayLength="89">
          <cvParam cvRef="MS" accession="MS:1000235" name="total ion current chromatogram" value=""/>
          <binaryDataArrayList count="2">
            <binaryDataArray encodedLength="964">
              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
              <cvParam cvRef="MS" accession="MS:1000574" name="zlib compression" value=""/>
              <cvParam cvRef="MS" accession="MS:1000595" name="time array" value="" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
              <binary>eJwByAI3/Q9/TdaoB+A/riK2ztIo4D8bEvdY+tDgP6/eu+DmZ+E/9T39ephQ4j/wAadkJr7jPzIt18ibaeQ/INJvXwfO5T9IG0esxafmP9fQ4MmBsec/fY6i4acE6T8dzvxqDhDqP9SnQilH7uo/UGhswtB96z+lJP47tQ3sP8IimegGnew/neQ0MUo97T/pK0gzFs3tP9sRTgtedO4/O1stnfwD7z/TetKcz5PvPxDM0eP3NvA/0CfyJOla8D9R3zKny6LwP46n+NLu6vA/whIPKJsy8T97oBUYsnrxPwVZPOJ9wvE/2l2N2X8K8j+neccpOlLyP7XgRV9BmvI/gfx/r/vh8j99eQH20SnzP4L3aISRcfM/76zddqG58z+emPViKCf0P4ac5DQxSvQ/BCSHddCS9D+WCb/Uz9v0P2recYqOJPU/F6+MIKht9T+pICxQeLb1P1bxRuaR//U/nIpUGFtI9j+VMwGse5H2P8hWqh5D2vY/BO/RCCMj9z9m/ylC12v3P772zJIAtfc/8Rl2Bcj99z8Y3ypi62z4P/uWOV0Wk/g/TCotNsDf+D/EqemNbSz5P9RlMbH5ePk/ob5lTpfF+T8iy2++/hH6P7fBdh2XXvo/E1ZQPiqr+j8iEphhtvf6P5odvIk0RPs/g9VrjRuR+z9PLqAqud37P3uQi1dGUPw/3gpOalV4/D+V6apT+Mb8P1WxHuTiFf0/tUJrWGZk/T89qLGqS7P9P3c1Zv8pAv4/9SUu2vZQ/j+ZjiYEmJ/+PymBum437v4/ITfDDfg8/z+yne+nxov/P6vfXxdY2v8/itD1am0nAECpC4tkojsAQAV7OdnzYgBAfCdmvRiKAEDiXS7iO7EAQCodrP9z2ABAmMjym6//AED9xO4ouyYBQEZKoK7bTQFAvd798V51AUAZTqxmsJwBQBWpMLYQxAFAxisjCGrrAUAQb226</binary>
            </binaryDataArray>
            <binaryDataArray encodedLength="532">
              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
              <cvParam cvRef="MS" accession="MS:1000574" name="zlib compression" value=""/>
              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of detector counts"/>
              <binary>eJwt0T1IQlEYBuAzRENITUI1XS0aKpdCl4auP0OQDaGCUck1cyqipkwKjpUSZENbS3ihln4kBUUlhFsQTaFSg5TFJcJqM6ShHyh6v6aH9/2+cy7cwxjjryNhM2NM6RyDksEGVU99/U9B3qb5twNZrjUhc4ee9iM59GLXAe3dhZagNxrA+eYzZLXlAfLFmSDOtWaQ2Y0WWUi0Uf9Spt5toXsqMZqfVCeRv7bIXhNk5TqUEi4ohu5pbglN4LsavQd95oPmygaU25OQswxlY57uedRCwT3sw/xyFqrLdspzWTI4QL3TAOXKmo/+kx+y81Ey7YHSyjwUzSY6Z5mGQn6I9F5P4Z7UhQNz3Q9UxitO5NMAFNJRKPVrXOg/16jfSdJeIQ6VBStkMTfl1DPlvn06r0Rs2F/tgEq3Fsp5A+SRkhV94hgK8V2aV2lf9nvJdxWK2SvsicY9G707R2a3g+PQnoPCoYh3UXQlKMVV9LywiSyGs/j/au2/fxPQ84YneqeTRpof0ftLxWKP+Rf78r+A</binary>
            </binaryDataArray>
          </binaryDataArrayList>
        </chromatogram>
      </chromatogramList>
    </run>
  </mzML>
  <indexList count="2">
    <index name="spectrum">
      <offset idRef="controllerType=0 controllerNumber=1 scan=5">4902</offset>
    </index>
    <index name="chromatogram">
      <offset idRef="TIC">51623</offset>
    </index>
  </indexList>
  <indexListOffset>54329</indexListOffset>
  <fileChecksum>b3c449213f1a9aa22d71869b30002cf0944c5773</fileChecksum>
</indexedmzML>