Mercurial > repos > computational-metabolomics > metfrag_vis
changeset 0:3dbe79671820 draft default tip
"planemo upload for repository https://github.com/computational-metabolomics/metfrag-galaxy commit b337c6296968848e3214f4b51df3d86776f84b6a"
author | computational-metabolomics |
---|---|
date | Tue, 14 Jul 2020 07:42:34 -0400 |
parents | |
children | |
files | metfrag-vis.py metfrag-vis.xml metfrag_logo.png test-data/metfrag_vis_input.tabular test-data/metfrag_vis_output.html |
diffstat | 5 files changed, 2170 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/metfrag-vis.py Tue Jul 14 07:42:34 2020 -0400 @@ -0,0 +1,695 @@ +#!/usr/bin/env python + +# Load modules +import argparse +import base64 +import csv +import os +import re +import time +import urllib.parse + +import matplotlib.pyplot as plt + +import pubchempy + +import requests + +# Parse arguments +parser = argparse.ArgumentParser( + description='Visualise MetFrag results in html.') +parser.add_argument('-v', '--version', action='version', + version='MetFrag-vis Version 0.9', + help='show version') +parser.add_argument('-i', '--input', metavar='metfrag_results.tsv', + dest="input_tsv", required=True, + help='MetFrag results as input') +parser.add_argument('-o', '--output', metavar='metfrag_results.html', + dest="output_html", required=True, + help='Write MetFrag results into this output file') +parser.add_argument('-m', '--max-candidates', metavar='10', + dest="max_candidates", default=10, type=int, + required=False, + help='Maximum number of candidates per compound [1-1000]') +parser.add_argument('-s', '--synonyms', dest='synonyms', action='store_true', + required=False, + help='Fetch synonyms from PubChem [disabled by default]') +parser.add_argument('-c', '--classyfire', dest='classyfire', + action='store_true', required=False, + help='Fetch compound classes from ClassyFire' + ' [disabled by default]') + +args = parser.parse_args() + +# Input CSV with MetFrag results +input_tsv = args.input_tsv + +# Output html of MetFrag results +output_html = args.output_html + +# Max number of candidates per compound +max_candidates = args.max_candidates + +# PubChem synonyms +pubchem_synonyms_enabled = args.synonyms + +# ClassyFire classes +classyfire_classes_enabled = args.classyfire + + +# ---------- cdk_inchi_to_svg ---------- +def cdk_inchi_to_svg(inchi): + if "cdk-inchi-to-svg" in os.environ: + JAVA_CMD = 'cdk-inchi-to-svg' + ' ' + str( + '\'' + inchi + '\'') + ' ' + 'cdk-inchi-to-svg-output.svg' + else: + JAVA_BINARY = '/usr/local/bin/java' + CDK_INCHI_TO_SVG_JAR = '/usr/local/bin/' \ + 'cdk-inchi-to-svg-0.0.1-' \ + 'SNAPSHOT-jar-with-dependencies.jar' + JAVA_CMD = str( + JAVA_BINARY + ' ' + '-jar' + ' ' + CDK_INCHI_TO_SVG_JAR + ' ' + + str('\'' + inchi + '\'') + ' ' + 'cdk-inchi-to-svg-output.svg') + + # Exec cdk-inchi-to-svg JAVA binary + exitcode = os.system(JAVA_CMD) + + # Check whether binary has successfully been run + if (exitcode == 0): + with open("cdk-inchi-to-svg-output.svg", "r") as svg_file: + svg_string = [] + for line in svg_file: + if not ('<?xml' in line) and not ('<!DOCTYPE' in line): + if (' fill=\'#FFFFFF\'' in line): + line = re.sub(' fill=\'#FFFFFF\'', + ' fill=\'#FFFFFF\' fill-opacity=\'0.0\'', + line) + svg_string.append(line) + svg_file.close() + os.remove("cdk-inchi-to-svg-output.svg") + return (str(''.join(svg_string))) + else: + return (' ') + + +# ---------- pubchem_link ---------- +def pubchem_link(compound_name): + return (str('https://pubchem.ncbi.nlm.nih.gov/#query=' + compound_name)) + + +# ---------- kegg_link ---------- +def kegg_link(compound_name): + return (str( + 'https://www.genome.jp/dbget-bin/' + 'www_bfind_sub?mode=bfind&max_hit=1000&dbkey=kegg&keywords=' + + compound_name)) + + +# ---------- biocyc_link ---------- +def biocyc_link(compound_name): + biocyc_url = urllib.parse.urlparse( + str( + 'https://www.biocyc.org/' + 'substring-search?type=NIL&object=' + + compound_name + '&quickSearch=Quick+Search')) + return (biocyc_url.geturl()) + + +# ---------- hmdb_link ---------- +def hmdb_link(compound_name): + hmdb_url = urllib.parse.urlparse( + str( + 'https://hmdb.ca/unearth/q?utf8=\xe2&query=' + + compound_name + '&searcher=metabolites&button=')) + return (hmdb_url.geturl()) + + +# ---------- hmdb_link ---------- +def chebi_link(inchi): + return (str( + 'https://www.ebi.ac.uk/chebi/advancedSearchFT.do?searchString=' + + inchi)) + + +# ---------- PubChem Synonyms ---------- +def fetch_pubchem_synonyms(inchi): + if not ('InChI=' in inchi): + return (' ') + + # Fetch CID from InChI + print('Retrieving PubChem CID from InChI...') + compound = pubchempy.get_compounds(identifier=inchi, namespace='inchi') + compound_cid = re.sub(r'\).*', '', re.sub(r'.*\(', '', str(compound))) + if len(compound_cid) <= 1: + print(str('Warning. No match for InChI \"' + str(inchi) + '\".')) + return (' ') + + # Retrieve compound + print('Retrieving PubChem compound information...') + compound = pubchempy.Compound.from_cid(compound_cid) + if ('synonyms' in dir(compound)): + return ('; '.join(compound.synonyms)) + else: + print(str('Warning. No synonyms found for CID \"' + str( + compound_cid) + '\".')) + return (' ') + + +# ---------- ClassyFire ---------- +def fetch_classyfire_classes(inchi): + if not ('InChI=' in inchi): + return (' ') + + # Send POST request to ClassyFire + print('Sending request to ClassyFire...') + classyfire_url = 'http://classyfire.wishartlab.com/queries.json' + classyfire_post = str( + '{\"label\":\"metfrag\",\"query_input\":\"' + inchi + + '\",\"query_type\":\"STRUCTURE\"}') + classyfire_headers = {'Content-Type': 'application/json'} + classyfire_request = requests.post(classyfire_url, data=classyfire_post, + headers=classyfire_headers) + + # Only continue when request has been successfully sent + if (classyfire_request.status_code != 201): + print('Error! Could not send request to ClassyFire. \"', + str(classyfire_request.status_code) + ': ' + str( + classyfire_request.reason), '\". Skipping entry.') + return (' ') + + # Get ClassyFire Query ID + classyfire_request.json() + classyfire_query_id = classyfire_request.json()['id'] + + # Query ClassyFire in max. 20 attempts + classyfire_request_loop = 0 + while (classyfire_request_loop < 20): + print(str( + 'Sending query ' + str(classyfire_query_id) + ' to ClassyFire...')) + time.sleep(10) + classyfire_query = requests.get( + str('http://classyfire.wishartlab.com/queries/' + str( + classyfire_query_id) + '.json')) + + if (classyfire_query.status_code == 200) and ( + classyfire_query.json()['classification_status'] == 'Done'): + classyfire_request_loop = 999 + break + else: + classyfire_request_loop += 1 + + if classyfire_request_loop == 999: + # Direct parent + direct_parent_name = classyfire_query.json()[ + 'entities'][0]['direct_parent']['name'] + direct_parent_url = classyfire_query.json()[ + 'entities'][0]['direct_parent']['url'] + direct_parent = str( + '<a target="_blank" href="' + direct_parent_url + '">' + + direct_parent_name + '</a>') + + # Alternative parents + alt_parents = [] + for i in range(0, len(classyfire_query.json()['entities'][0][ + 'alternative_parents'])): + alt_parent_name = classyfire_query.json()[ + 'entities'][0]['alternative_parents'][i]['name'] + alt_parent_url = classyfire_query.json()[ + 'entities'][0]['alternative_parents'][i]['url'] + alt_parent = str( + '<a target="_blank" href="' + alt_parent_url + '">' + + alt_parent_name + '</a>') + alt_parents.append(alt_parent) + + # Concat classes + classes = str('<b>' + direct_parent + '</b>, <br>' + str( + ', <br>'.join(alt_parents))) + else: + print('Warning. Timout sending query to ClassyFire. Skipping entry.') + classes = ' ' + + return (classes) + + +# ---------- Plot Spectrum ---------- +def plot_spectrum(spectrum, spectrum_explained, spectrum_explained_formulas): + # Plot + plt.figure(figsize=[5.5, 4.4]) + plt.xlabel('m/z') + plt.ylabel('intensity') + + # Plot spectrum + x = [] + y = [] + for i in spectrum.split(';'): + t = i.split('_') + x.append(t[0]) + y.append(t[1]) + + for i in range(0, len(x)): + plt.plot([float(x[i]), float(x[i])], [0, float(y[i])], linewidth=1, + color='black') + plt.plot(float(x[i]), float(y[i]), 'o', color='black', markersize=4) + + if not (spectrum_explained == 'NA') and not ( + spectrum_explained_formulas == 'NA'): + # Plot explained peaks + ex = [] + ey = [] + for i in spectrum_explained.split(';'): + t = i.split('_') + ex.append(t[0]) + ey.append(y[x.index(t[0])]) + + for i in range(0, len(ex)): + plt.plot([float(ex[i]), float(ex[i])], [0, float(ey[i])], + linewidth=3, color='#2b8126') + plt.plot(float(ex[i]), float(ey[i]), 'o', color='#2b8126', + markersize=8) + + # Plot formulas on explained peaks + ex = [] + ey = [] + ez = [] + for i in spectrum_explained_formulas.split(';'): + t = i.split(':') + ex.append(t[0]) + ey.append(y[x.index(t[0])]) + ez.append(t[1]) + + for i in range(0, len(ex)): + plt.text(float(ex[i]), float(ey[i]) + 1000, ez[i], color='#2b8126', + fontsize=8, + horizontalalignment='center', verticalalignment='bottom') + + # Save SVG + plt.savefig("metfrag-vis-spectrum.svg", format="svg", transparent=True) + plt.close() + + # Import SVG + with open("metfrag-vis-spectrum.svg", "r") as svg_file: + svg_string = [] + for line in svg_file: + if not ('<?xml' in line) and not ('<!DOCTYPE' in line) and not ( + ' "http://www.w3.org/Graphics' in line): + svg_string.append(line) + svg_file.close() + os.remove("metfrag-vis-spectrum.svg") + return (str(''.join(svg_string))) + + +# #################### MAIN #################### +if pubchem_synonyms_enabled: + print('Fetching of PubChem Synonyms enabled.') +if classyfire_classes_enabled: + print('Fetching of ClassyFire Classes enabled.') + +# Open output html file +try: + metfrag_html = open(output_html, "w") +except Exception as e: + print("Error writing output file. {}".format(e)) + exit(1) + +# Write html header +metfrag_html.write('<!DOCTYPE html>\n') +metfrag_html.write('<html>\n') +metfrag_html.write('<head>\n') +metfrag_html.write('<title>' + 'msPurity MetFrag results' + '</title>\n') +metfrag_html.write('<style type="text/css">\n') +metfrag_html.write('svg { width: 200px; height: 100%; }\n') +metfrag_html.write( + 'body { font-family: Lucida, Verdana, Arial, Helvetica, sans-serif; ' + 'font-size: 13px; text-align: left; ' + 'color: #000000; margin: 8px 8px 8px 8px; }\n') +metfrag_html.write( + 'A { color: #2b8126; text-decoration: none; background: transparent; }\n') +metfrag_html.write( + 'A:visited { ' + 'color: #19681a; text-decoration: none; background: transparent; ' + '}\n') +metfrag_html.write( + 'A:hover { ' + 'color: #8fc180; text-decoration: underline; background: transparent; ' + '}\n') +metfrag_html.write( + 'h1 { font-size: 32px; font-weight: bold; text-align: center; ' + 'padding: 0px 0px 4px 0px; margin: 26px 0px 0px 0px; }\n') +metfrag_html.write( + 'h2 { font-size: 24px; font-weight: bold; text-align: left; ' + 'padding: 0px 0px 4px 0px; margin: 26px 0px 0px 0px; }\n') +metfrag_html.write( + 'table { font-family: Lucida, Verdana, Arial, Helvetica, sans-serif; ' + 'font-size: 10px; text-align: left; ' + 'line-height: 10px; border: 1px solid #e3efdf; ' + 'background-color: #ecf5ea; margin-bottom: 8px; ' + 'min-width: 1600px; max-width: 2400px; }\n') +metfrag_html.write( + '#tablediv { width: 100%; min-width: 20px; max-width: 200px; }\n') +metfrag_html.write('.tdmax { min-width: 200px; max-width: 200px; }\n') +metfrag_html.write('.tdvar { min-width: 200px; max-width: 600px; }\n') +metfrag_html.write('tr:nth-child(even) { background-color: #f6faf5; }\n') +metfrag_html.write('</style>\n') +metfrag_html.write('</head>\n') +metfrag_html.write('<body>\n') + +# Read input csv file +with open(input_tsv, "r") as metfrag_file: + metfrag_results = csv.DictReader(metfrag_file, delimiter='\t') + # Parse each line + line_count = 0 + compound = "" + candidates = 0 + for row in metfrag_results: + + # Start new document + if (line_count == 0): + if os.path.join(os.path.dirname(os.path.abspath(__file__)), + 'metfrag_logo.png'): + logo_pth = os.path.join( + os.path.dirname(os.path.abspath(__file__)), + 'metfrag_logo.png') + else: + logo_pth = '/usr/local/share/metfrag/metfrag_logo.png' + + with open(logo_pth, "rb") as png_file: + png_encoded = base64.b64encode(png_file.read()) + metfrag_html.write(str( + '\n<h1><img style="vertical-align:bottom" ' + 'src="data:image/png;base64,' + + png_encoded.decode('utf-8') + + '" alt="metfrag-logo" width="150"></img><text ' + 'style="line-height:2.0"> results</text></h1>\n' + )) + else: + # Parameter list at beginning of document + if (line_count == 1): + metfrag_html.write('\n<h2>Parameter list</h2>\n') + metfrag_html.write(str('MetFragDatabaseType=' + + re.sub(' .*', '', + re.sub('.*MetFragDatabaseType=', + '', + row[ + "MetFragCLIString"])) + + '<br>\n') + ) + metfrag_html.write(str('PrecursorIonMode=' + + re.sub(' .*', '', + re.sub('.*PrecursorIonMode=', '', + row[ + "MetFragCLIString"])) + + '<br>\n') + ) + metfrag_html.write(str('DatabaseSearchRelativeMassDeviation=' + + re.sub(' .*', '', + re.sub( + '.*DatabaseSearchRelative' + 'MassDeviation=', + '', + row[ + "MetFragCLIString"])) + + '<br>\n') + ) + metfrag_html.write( + str('FragmentPeakMatchAbsoluteMassDeviation=' + + re.sub(' .*', '', + re.sub( + '.*FragmentPeakMatchAbsoluteMassDeviation=', + '', + row["MetFragCLIString"])) + '<br>\n') + ) + metfrag_html.write( + str('FragmentPeakMatchRelativeMassDeviation=' + + re.sub(' .*', '', + re.sub( + '.*FragmentPeakMatchRelativeMassDeviation=', + '', + row["MetFragCLIString"])) + '<br>\n') + ) + metfrag_html.write(str('FilterExcludedElements=' + + re.sub(' .*', '', + re.sub( + '.*FilterExcludedElements=', + '', + row[ + "MetFragCLIString"])) + + '<br>\n') + ) + metfrag_html.write(str('FilterIncludedElements=' + + re.sub(' .*', '', + re.sub( + '.*FilterIncludedElements=', + '', + row[ + "MetFragCLIString"])) + + '<br>\n') + ) + metfrag_html.write(str('MetFragScoreTypes=' + + re.sub(' .*', '', + re.sub('.*MetFragScoreTypes=', + '', + row[ + "MetFragCLIString"])) + + '<br>\n') + ) + # New compound in list + if (row["name"] != compound): + compound = row["name"] + candidates = 0 + identifier = row["name"] + monoisotopic_mass = row["MonoisotopicMass"] + precursor_mz = row["precursor_mz"] + + if "retention_time" in row: + precursor_rt = row["retention_time"] + try: + precursor_rt = round(float(precursor_rt), 4) + except ValueError: + continue + else: + precursor_rt = '' + + if "precursor_type" in row: + precursor_type = row["precursor_type"] + elif "adduct" in row: + precursor_type = row["adduct"] + else: + precursor_type = '' + + if line_count > 1: + metfrag_html.write(str('</table>\n')) + + metfrag_html.write(str('\n' + '<h2>' + identifier + '</h2>\n')) + metfrag_html.write(str('<p><b>Precursor Type:</b> ' + str( + precursor_type) + '<br>')) + metfrag_html.write(str('<b>Precursor Mass:</b> ' + str( + round(float(precursor_mz), 4)) + '<br>')) + metfrag_html.write( + str('<b>Precursor Retention Time:</b> ' + str( + precursor_mz) + '<br></p>')) + metfrag_html.write(str('\n' + '<table>\n')) + metfrag_html.write(str( + '<tr style="vertical-align:bottom; ' + 'background-color:#e3efdf;">' + + '<td class="tdmax">' + '<b>Spectrum</b>' + '</td>' + + '<td class="tdmax">' + '<b>Structure</b>' + '</td>' + + '<td>' + '<b>Monoisotopic Mass</b>' + '</td>' + + '<td>' + '<b>Molecular Formula</b>' + '</td>' + + '<td>' + '<b>Compound Name</b>' + '</td>' + + '<td class="tdvar">' + '<b>PubChem Synonyms</b>'+'</td>' + + '<td>' + '<b>Compound Classes</b>' + '</td>' + + '<td>' + '<b>MetFrag Score</b>' + '</td>' + + '<td>' + '<b>MetFusion Score</b>' + '</td>' + + '<td>' + '<b>Fragmenter Score</b>' + '</td>' + + '<td>' + '<b>Suspectlist Score</b>' + '</td>' + + '<td>' + '<b>Explained Peaks</b>' + '</td>' + + '<td>' + '<b>MetFrag Web</b>' + '</td>' + + '<td>' + '<b>External Links</b>' + '</td>' + + '<td class="tdmax">' + '<b>InChI</b>' + '</td>' + + '</tr>\n')) + + # Compound candidate + if (candidates < max_candidates): + # Column variables + inchi = row["InChI"] + smiles = row["SMILES"] + mol_formula = row["MolecularFormula"] + compound_name = row["IUPACName"] + frag_score = row["FragmenterScore"] + metfusion_score = row["OfflineMetFusionScore"] + score = row["Score"] + if "SuspectListScore" in row: + suspectlist_score = row["SuspectListScore"] + else: + suspectlist_score = 0 + peaks_explained = row["NoExplPeaks"] + peaks_used = row["NumberPeaksUsed"] + spectrum_explained = row["ExplPeaks"] + spectrum_explained_formulas = row["FormulasOfExplPeaks"] + identifier = row["Identifier"] + + # PubChem Synonyms + if pubchem_synonyms_enabled: + pubchem_synonyms = fetch_pubchem_synonyms(inchi) + else: + pubchem_synonyms = ' ' + + # Compound Classes + if classyfire_classes_enabled: + compound_classes = fetch_classyfire_classes(inchi) + else: + compound_classes = ' ' + + # Draw Spectrum + spectrum = re.sub(' .*', '', re.sub('.*PeakListString=', '', + row["MetFragCLIString"])) + spectrum_string = plot_spectrum(spectrum, spectrum_explained, + spectrum_explained_formulas) + + # Draw SVG + svg_string = cdk_inchi_to_svg(str(inchi)) + + # External links + external_links = str( + '<a target="_blank" href="' + pubchem_link( + compound_name) + '">PubChem</a>' + ', ' + + '<a target="_blank" href="' + kegg_link( + compound_name) + '">KEGG</a>' + ', ' + + '<a target="_blank" href="' + hmdb_link( + compound_name) + '">HMDB</a>' + ', ' + + '<a target="_blank" href="' + biocyc_link( + compound_name) + '">BioCyc</a>' + ', ' + + '<a target="_blank" href="' + chebi_link( + inchi) + '">ChEBI</a>') + + # MetFragWeb + FragmentPeakMatchAbsoluteMassDeviation = str( + '' + + re.sub(' .*', '', + re.sub( + '.*FragmentPeakMatchAbsoluteMassDeviation=', + 'FragmentPeakMatchAbsoluteMassDeviation=', + row["MetFragCLIString"])) + ) + FragmentPeakMatchRelativeMassDeviation = str( + '' + + re.sub(' .*', '', + re.sub( + '.*FragmentPeakMatchRelativeMassDeviation=', + 'FragmentPeakMatchRelativeMassDeviation=', + row["MetFragCLIString"])) + ) + DatabaseSearchRelativeMassDeviation = str( + '' + + re.sub(' .*', '', + re.sub( + '.*DatabaseSearchRelativeMassDeviation=', + 'DatabaseSearchRelativeMassDeviation=', + row["MetFragCLIString"])) + ) + IonizedPrecursorMass = str( + 'IonizedPrecursorMass=' + str(row["precursor_mz"])) + NeutralPrecursorMass = str( + '' + re.sub(' .*', '', + re.sub( + '.*NeutralPrecursorMass=', + 'NeutralPrecursorMass=', + row[ + "MetFragCLIString"])) + ) + NeutralPrecursorMolecularFormula = str( + 'NeutralPrecursorMolecularFormula=' + str( + row["MolecularFormula"])) + PrecursorIonMode = str( + '' + re.sub(' .*', '', re.sub('.*PrecursorIonMode=', + 'PrecursorIonMode=', + row["MetFragCLIString"]))) + PeakList = str( + '' + re.sub(' .*', '', + re.sub('.*PeakListString=', 'PeakList=', + row["MetFragCLIString"]))) + MetFragDatabaseType = str( + '' + re.sub(' .*', '', + re.sub( + '.*MetFragDatabaseType=', + 'MetFragDatabaseType=', + row["MetFragCLIString"]))) + + metfrag_web = str( + 'https://msbi.ipb-halle.de/MetFrag/landing.xhtml?' + + FragmentPeakMatchAbsoluteMassDeviation + '&' + + FragmentPeakMatchRelativeMassDeviation + '&' + + DatabaseSearchRelativeMassDeviation + '&' + + IonizedPrecursorMass + '&' + + NeutralPrecursorMass + '&' + + # NeutralPrecursorMolecularFormula + '&' + + PrecursorIonMode + '&' + + PeakList + '&' + + MetFragDatabaseType) + + # Write html code + metfrag_html.write(str('<tr style="vertical-align:center">' + + '<td class="tdmax">' + + spectrum_string + + '</td>' + + '<td class="tdmax">' + + svg_string + + '</td>' + + '<td>' + + monoisotopic_mass + + '</td>' + + '<td>' + + mol_formula + + '</td>' + + '<td>' + + compound_name + + '</td>' + + '<td class="tdvar">' + + pubchem_synonyms + + '</td>' + + '<td>' + + compound_classes + '</td>' + + '<td>' + + str(round(float(score), 3)) + + '</td>' + + '<td>' + + str(round(float(metfusion_score), 3)) + + '</td>' + + '<td>' + + str(round(float(frag_score), 3)) + + '</td>' + + '<td>' + + str( + round(float(suspectlist_score), 3) + ) + + '</td>' + + '<td>' + + peaks_explained + + ' / ' + + peaks_used + + '</td>' + + '<td>' + + '<a target="_blank" href="' + + metfrag_web + + '">MetFragWeb</a>' + + '</td>' + + '<td>' + + external_links + + '</td>' + + '<td class="tdmax">' + + inchi + + '</td>' + + '</tr>\n')) + + line_count += 1 + candidates += 1 + + # Finish candidate list + metfrag_html.write(str('</table>\n')) + +# Write html footer +metfrag_html.write('\n</body>\n') +metfrag_html.write('</html>\n') + +# Close output html file +metfrag_html.close()
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/metfrag-vis.xml Tue Jul 14 07:42:34 2020 -0400 @@ -0,0 +1,154 @@ +<tool id="metfrag_vis" name="MetFrag Vis" version="2.4.5+galaxy0" profile="18.01"> + <description> + Visualisation for MetFrag results + </description> + <requirements> + <requirement type="package" version="2.4.5">metfrag</requirement> + <requirement type="package" version="0.9">cdk-inchi-to-svg</requirement> + <requirement type="package" version="3.7.3">python</requirement> + <requirement type="package" version="1.0.4">pubchempy</requirement> + <requirement type="package">matplotlib</requirement> + <requirement type="package">requests</requirement> + <requirement type="package">numpy</requirement> + </requirements> + <stdio> + <regex match="Cannot allocate memory" + source="stderr" + level="fatal_oom" + description="Out of memory error occurred" /> + </stdio> + <command detect_errors="exit_code"> + <![CDATA[ + python '$__tool_directory__/metfrag-vis.py' + -i $metfrag_vis_input + -o $metfrag_vis_output + -m $metfrag_vis_hits_limit + $metfrag_synonyms + $metfrag_classyfire + ]]></command> + <inputs> + <param argument="-i" name="metfrag_vis_input" type="data" format="tsv,tabular" multiple="False" optional="False" label="MetFrag result file (Output tabular file from MetFrag tool)" /> + <param argument="-m" name="metfrag_vis_hits_limit" type="text" value="10" label="MetFrag Hits Limit" optional="False" help="Limit of candidate hits returned per compound" /> + <param argument="-s" name="metfrag_synonyms" type="boolean" truevalue="-s" falsevalue="" checked="true" label="Synonyms" help="Fetch synonyms for each candidate from PubChem"/> + <param argument="-c" name="metfrag_classyfire" type="boolean" truevalue="-c" falsevalue="" label="ClassyFire" help="Fetch compound classes for each candidate using ClassyFire"/> + </inputs> + <outputs> + <data name="metfrag_vis_output" format="html" label="Summary HTML file" /> + </outputs> + + <tests> + <test> + <param name="metfrag_vis_input" value="metfrag_vis_input.tabular"/> + <output name="metfrag_vis_output" file="metfrag_vis_output.html" compare="sim_size"/> + </test> + </tests> + + <help> +--------------------- +MetFrag Visualisation +--------------------- + +Description +----------- + +MetFrag is a freely available software for the annotation of high precision tandem mass spectra of metabolites which is +a first and critical step for the identification of a molecule's structure. Candidate molecules of different databases +are fragmented "in silico" and matched against mass to charge values. A score calculated using the fragment peak +matches gives hints to the quality of the candidate spectrum assignment. + +This module summarises the results generated by MetFrag. It takes the (sometimes very large) output tabular file, parses the file and enriches it with images of the spectra showing the extracted and matched peaks and putative structures of the compound candidates. The module supports limiting the results per compound (default 10 candidates). Results can be enriched with further information from PubChem and ClassyFire to make it easier to select candidates. The information is summarised in a HTML5 file which can be viewed directly in Galaxy. + +Website: http://ipb-halle.github.io/MetFrag/ + +Parameters +---------- + +**\1. Tabular file** + +Tabular file created using the *MetFrag* tool. + +**\2. MetFrag Hits Limit** + +Defines the limit of candidates returned per compound. + +**\3. Synonyms** + +If set to True, synonyms for each candidate are fetched from PubChem. + +**\4. ClassyFire** + +If set to True, compound classes are fetched for each candidate using ClassyFire. + +Output +------- + +The output is similar to the MetFrag results tabular, but enriched with additional images of spectra, compound candidates and (if enabled) compound classes, alternative names and links to online services. + ++-------------+--------------------------------------------+---+ +| adduct | name |...| ++-------------+--------------------------------------------+---+ +| [M-H]- | D-Glucose; LC-ESI-QTOF; MS2; CE: 10; R=; |...| ++-------------+--------------------------------------------+---+ +| [M-H]- | D-Glucose; LC-ESI-QTOF; MS2; CE: 10; R=; |...| ++-------------+--------------------------------------------+---+ +| ... | ... |...| ++-------------+--------------------------------------------+---+ + +Table continued (these columns are derived from the MetFrag result): + ++---+------------------+----------------------------------------------------------+-------------------------------------------------------------------------------------+-----+ +|...| sample_name | ExplPeaks | FormulasOfExplPeaks | ... | ++---+------------------+----------------------------------------------------------+-------------------------------------------------------------------------------------+-----+ +|...| 1_metfrag_result | 59.0138_715.8;71.014_679.7;89.0251_999.0;101.0234_103.0 | 59.0138:[C2H4O2]-H-;71.014:[C3H5O2-H]-H-;89.0251:[C3H6O3]-H-;101.0234:[C4H7O3-H]-H- | ... | ++---+------------------+----------------------------------------------------------+-------------------------------------------------------------------------------------+-----+ +|...| 1_metfrag_result | 59.0138_715.8;71.014_679.7;89.0251_999.0;101.0234_103.0 | 59.0138:[C2H4O2]-H-;71.014:[C3H5O2-H]-H-;89.0251:[C3H6O3]-H-;101.0234:[C4H7O3-H]-H- | ... | ++---+------------------+----------------------------------------------------------+-------------------------------------------------------------------------------------+-----+ +|...| ... | ... | ... | ... | ++---+------------------+----------------------------------------------------------+-------------------------------------------------------------------------------------+-----+ + + +Table continued (columns are derived from the MetFrag result): + ++---+------------------+----------------------------+------------------------------------------------------+------------+---------------------------------------------------------------------------------+---+ +|...| FragmenterScore | FragmenterScore_Values | FormulasOfExplPeaks | Identifier | InChI |...| ++---+------------------+----------------------------+------------------------------------------------------+------------+---------------------------------------------------------------------------------+---+ +|...| 105.844569063138 | 696.0;1156.0;696.0;1156.0 | 6-(hydroxymethyl)oxane-2,3,4,5-tetrol | 206 | InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H |...| ++---+------------------+----------------------------+------------------------------------------------------+------------+---------------------------------------------------------------------------------+---+ +|...| 105.844569063138 | 696.0;1156.0;696.0;1156.0 | (3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol | 5793 | InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6?/m1/s1 |...| ++---+------------------+----------------------------+------------------------------------------------------+------------+---------------------------------------------------------------------------------+---+ +|...| ... | ... | ... | ... | ... |...| ++---+------------------+----------------------------+------------------------------------------------------+------------+---------------------------------------------------------------------------------+---+ + +Table continued (columns are derived from the MetFrag result): + + ++---+-------------+-----------------+-----------------------+----------------------------------------------+------------------+------------------+--------+ +|...| NoExplPeaks | NumberPeaksUsed | OfflineMetFusionScore | SMILES | Score | SuspectListScore | XlogP3 | ++---+-------------+-----------------+-----------------------+----------------------------------------------+------------------+------------------+--------+ +|...| 4 | 5 | 2.84566828424078 | C(C1C(C(C(C(O1)O)O)O)O)O | 1.82678219603441 | 1 | -2.6 | ++---+-------------+-----------------+-----------------------+----------------------------------------------+------------------+------------------+--------+ +|...| 4 | 5 | 2.84566828424078 | C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)O)O)O | 1.82678219603441 | 1 | -2.6 | ++---+-------------+-----------------+-----------------------+----------------------------------------------+------------------+------------------+--------+ +|...| ... | ... | ... | ... | ... | ... | ... | ++---+-------------+-----------------+-----------------------+----------------------------------------------+------------------+------------------+--------+ + +Additional notes +-------------------- + +This module queries the online services PubChem and ClassyFire. + +Feunang YD, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, +Greiner R, Wishart DS (2016): ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8:61. doi: 10.1186/s13321-016-0174-y + +Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019): PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 8;47(D1):D1102-D1109. doi: 10.1093/nar/gky1033 + +Developers and contributors +--------------------------- +- **Kristian Peters (kpeters@ipb-halle.de) - IPB Halle (Germany)** +- **Tom Lawson (t.n.lawson@bham.ac.uk) - University of Birmingham (UK)** +- **Christoph Ruttkies (christoph.ruttkies@ipb-halle.de) - IPB Halle (Germany)** + </help> + <citations> + <citation type="doi">10.1186/s13321-016-0115-9</citation> + </citations> +</tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/metfrag_vis_input.tabular Tue Jul 14 07:42:34 2020 -0400 @@ -0,0 +1,4 @@ +MetFragCLIString name AlignmentID retention_time num_peaks sample_name precursor_type precursor_mz ExplPeaks FormulasOfExplPeaks FragmenterScore FragmenterScore_Values IUPACName Identifier InChI InChIKey InChIKey1 InChIKey2 MaximumTreeDepth MolecularFormula MonoisotopicMass NoExplPeaks NumberPeaksUsed OfflineMetFusionScore SMILES Score XlogP3 +metfrag PrecursorIonMode=1 MetFragScoreWeights=1.0,1.0 SampleName=1_metfrag_result FragmentPeakMatchAbsoluteMassDeviation=0.001 NumberThreads=1 DatabaseSearchRelativeMassDeviation=10.0 PeakListPath=./temp/1_tmpspec.txt MetFragDatabaseType=PubChem FragmentPeakMatchRelativeMassDeviation=5.0 MetFragCandidateWriter=CSV MetFragScoreTypes=FragmenterScore,OfflineMetFusionScore IsPositiveIonMode=True NeutralPrecursorMass=148.12786092 ResultsPath=./temp/ PeakListString=121.099329887276_182;149.133267159026_510;150.14016979533_114 pos_27_winter_Marpol_27_2.E.3_01_17272:1 1 720.852 3 1_metfrag_result [M+H]+ 149.13513692 NA NA 0.0 NA dimethyl(dipropyl)-lambda4-sulfane 71774044 InChI=1S/C8H20S/c1-5-7-9(3,4)8-6-2/h5-8H2,1-4H3 OPMSGHPOQIQQRS-UHFFFAOYSA-N OPMSGHPOQIQQRS UHFFFAOYSA 2 C8H20S 148.128572 0 1 0.37031226614982965 CCCS(C)(C)CCC 1.0 2.7 +metfrag PrecursorIonMode=1 MetFragScoreWeights=1.0,1.0 SampleName=1_metfrag_result FragmentPeakMatchAbsoluteMassDeviation=0.001 NumberThreads=1 DatabaseSearchRelativeMassDeviation=10.0 PeakListPath=./temp/1_tmpspec.txt MetFragDatabaseType=PubChem FragmentPeakMatchRelativeMassDeviation=5.0 MetFragCandidateWriter=CSV MetFragScoreTypes=FragmenterScore,OfflineMetFusionScore IsPositiveIonMode=True NeutralPrecursorMass=148.12786092 ResultsPath=./temp/ PeakListString=121.099329887276_182;149.133267159026_510;150.14016979533_114 pos_27_winter_Marpol_27_2.E.3_01_17272:1 1 720.852 3 1_metfrag_result [M+H]+ 149.13513692 NA NA 0.0 NA butyl-ethyl-dimethyl-lambda4-sulfane 90984195 InChI=1S/C8H20S/c1-5-7-8-9(3,4)6-2/h5-8H2,1-4H3 HCGXHQGSWBNABQ-UHFFFAOYSA-N HCGXHQGSWBNABQ UHFFFAOYSA 2 C8H20S 148.128572 0 1 0.37031226614982965 CCCCS(C)(C)CC 1.0 2.5 +metfrag PrecursorIonMode=1 MetFragScoreWeights=1.0,1.0 SampleName=1_metfrag_result FragmentPeakMatchAbsoluteMassDeviation=0.001 NumberThreads=1 DatabaseSearchRelativeMassDeviation=10.0 PeakListPath=./temp/1_tmpspec.txt MetFragDatabaseType=PubChem FragmentPeakMatchRelativeMassDeviation=5.0 MetFragCandidateWriter=CSV MetFragScoreTypes=FragmenterScore,OfflineMetFusionScore IsPositiveIonMode=True NeutralPrecursorMass=148.12786092 ResultsPath=./temp/ PeakListString=121.099329887276_182;149.133267159026_510;150.14016979533_114 pos_27_winter_Marpol_27_2.E.3_01_17272:1 1 720.852 3 1_metfrag_result [M+H]+ 149.13513692 NA NA 0.0 NA trimethyl(3-methylbutyl)-lambda4-sulfane 118334050 InChI=1S/C8H20S/c1-8(2)6-7-9(3,4)5/h8H,6-7H2,1-5H3 DFXVYXYADDYUJD-UHFFFAOYSA-N DFXVYXYADDYUJD UHFFFAOYSA 2 C8H20S 148.128572 0 1 0.3692650195260169 CC(C)CCS(C)(C)C 0.9971719904536216 2.6 \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/metfrag_vis_output.html Tue Jul 14 07:42:34 2020 -0400 @@ -0,0 +1,1317 @@ +<!DOCTYPE html> +<html> +<head> +<title>msPurity MetFrag results</title> +<style type="text/css"> +svg { width: 200px; height: 100%; } +body { font-family: Lucida, Verdana, Arial, Helvetica, sans-serif; font-size: 13px; text-align: left; color: #000000; margin: 8px 8px 8px 8px; } +A { color: #2b8126; text-decoration: none; background: transparent; } +A:visited { color: #19681a; text-decoration: none; background: transparent; } +A:hover { color: #8fc180; text-decoration: underline; background: transparent; } +h1 { font-size: 32px; font-weight: bold; text-align: center; padding: 0px 0px 4px 0px; margin: 26px 0px 0px 0px; } +h2 { font-size: 24px; font-weight: bold; text-align: left; padding: 0px 0px 4px 0px; margin: 26px 0px 0px 0px; } +table { font-family: Lucida, Verdana, Arial, Helvetica, sans-serif; font-size: 10px; text-align: left; line-height: 10px; border: 1px solid #e3efdf; background-color: #ecf5ea; margin-bottom: 8px; min-width: 1600px; max-width: 2400px; } +#tablediv { width: 100%; min-width: 20px; max-width: 200px; } +.tdmax { min-width: 200px; max-width: 200px; } +.tdvar { min-width: 200px; max-width: 600px; } +tr:nth-child(even) { background-color: #f6faf5; } +</style> +</head> +<body> + +<h1><img style="vertical-align:bottom" src="" alt="metfrag-logo" width="150"></img><text style="line-height:2.0"> results</text></h1> + +<h2>Parameter list</h2> +MetFragDatabaseType=PubChem<br> +PrecursorIonMode=1<br> +DatabaseSearchRelativeMassDeviation=10.0<br> +FragmentPeakMatchAbsoluteMassDeviation=0.001<br> +FragmentPeakMatchRelativeMassDeviation=5.0<br> +FilterExcludedElements=metfrag<br> +FilterIncludedElements=metfrag<br> +MetFragScoreTypes=FragmenterScore,OfflineMetFusionScore<br> + +<h2>pos_27_winter_Marpol_27_2.E.3_01_17272:1</h2> +<p><b>Precursor Type:</b> [M+H]+<br><b>Precursor Mass:</b> 149.1351<br><b>Precursor Retention Time:</b> 720.852<br></p> +<table> +<tr style="vertical-align:bottom; background-color:#e3efdf;"><td class="tdmax"><b>Spectrum</b></td><td class="tdmax"><b>Structure</b></td><td><b>Monoisotopic Mass</b></td><td><b>Molecular Formula</b></td><td><b>Compound Name</b></td><td class="tdvar"><b>PubChem Synonyms</b></td><td><b>Compound Classes</b></td><td><b>MetFrag Score</b></td><td><b>MetFusion Score</b></td><td><b>Fragmenter Score</b></td><td><b>Suspectlist Score</b></td><td><b>Explained Peaks</b></td><td><b>MetFrag Web</b></td><td><b>External Links</b></td><td class="tdmax"><b>InChI</b></td></tr> +<tr style="vertical-align:center"><td class="tdmax"><!-- Created with matplotlib (https://matplotlib.org/) --> +<svg height="316.8pt" version="1.1" viewBox="0 0 396 316.8" width="396pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> + <defs> + <style type="text/css"> +*{stroke-linecap:butt;stroke-linejoin:round;} + </style> + </defs> + <g id="figure_1"> + <g id="patch_1"> + <path d="M 0 316.8 +L 396 316.8 +L 396 0 +L 0 0 +z +" style="fill:none;"/> + </g> + <g id="axes_1"> + <g id="patch_2"> + <path d="M 49.5 281.952 +L 356.4 281.952 +L 356.4 38.016 +L 49.5 38.016 +z +" style="fill:none;"/> + </g> + <g id="matplotlib.axis_1"> + <g id="xtick_1"> + <g id="line2d_1"> + <defs> + <path d="M 0 0 +L 0 3.5 +" id="mcdfcbc69ce" style="stroke:#000000;stroke-width:0.8;"/> + </defs> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="52.888562" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_1"> + <!-- 120 --> + <defs> + <path d="M 12.40625 8.296875 +L 28.515625 8.296875 +L 28.515625 63.921875 +L 10.984375 60.40625 +L 10.984375 69.390625 +L 28.421875 72.90625 +L 38.28125 72.90625 +L 38.28125 8.296875 +L 54.390625 8.296875 +L 54.390625 0 +L 12.40625 0 +z +" id="DejaVuSans-49"/> + <path d="M 19.1875 8.296875 +L 53.609375 8.296875 +L 53.609375 0 +L 7.328125 0 +L 7.328125 8.296875 +Q 12.9375 14.109375 22.625 23.890625 +Q 32.328125 33.6875 34.8125 36.53125 +Q 39.546875 41.84375 41.421875 45.53125 +Q 43.3125 49.21875 43.3125 52.78125 +Q 43.3125 58.59375 39.234375 62.25 +Q 35.15625 65.921875 28.609375 65.921875 +Q 23.96875 65.921875 18.8125 64.3125 +Q 13.671875 62.703125 7.8125 59.421875 +L 7.8125 69.390625 +Q 13.765625 71.78125 18.9375 73 +Q 24.125 74.21875 28.421875 74.21875 +Q 39.75 74.21875 46.484375 68.546875 +Q 53.21875 62.890625 53.21875 53.421875 +Q 53.21875 48.921875 51.53125 44.890625 +Q 49.859375 40.875 45.40625 35.40625 +Q 44.1875 33.984375 37.640625 27.21875 +Q 31.109375 20.453125 19.1875 8.296875 +z +" id="DejaVuSans-50"/> + <path d="M 31.78125 66.40625 +Q 24.171875 66.40625 20.328125 58.90625 +Q 16.5 51.421875 16.5 36.375 +Q 16.5 21.390625 20.328125 13.890625 +Q 24.171875 6.390625 31.78125 6.390625 +Q 39.453125 6.390625 43.28125 13.890625 +Q 47.125 21.390625 47.125 36.375 +Q 47.125 51.421875 43.28125 58.90625 +Q 39.453125 66.40625 31.78125 66.40625 +z +M 31.78125 74.21875 +Q 44.046875 74.21875 50.515625 64.515625 +Q 56.984375 54.828125 56.984375 36.375 +Q 56.984375 17.96875 50.515625 8.265625 +Q 44.046875 -1.421875 31.78125 -1.421875 +Q 19.53125 -1.421875 13.0625 8.265625 +Q 6.59375 17.96875 6.59375 36.375 +Q 6.59375 54.828125 13.0625 64.515625 +Q 19.53125 74.21875 31.78125 74.21875 +z +" id="DejaVuSans-48"/> + </defs> + <g transform="translate(43.344812 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-50"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="xtick_2"> + <g id="line2d_2"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="100.924362" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_2"> + <!-- 125 --> + <defs> + <path d="M 10.796875 72.90625 +L 49.515625 72.90625 +L 49.515625 64.59375 +L 19.828125 64.59375 +L 19.828125 46.734375 +Q 21.96875 47.46875 24.109375 47.828125 +Q 26.265625 48.1875 28.421875 48.1875 +Q 40.625 48.1875 47.75 41.5 +Q 54.890625 34.8125 54.890625 23.390625 +Q 54.890625 11.625 47.5625 5.09375 +Q 40.234375 -1.421875 26.90625 -1.421875 +Q 22.3125 -1.421875 17.546875 -0.640625 +Q 12.796875 0.140625 7.71875 1.703125 +L 7.71875 11.625 +Q 12.109375 9.234375 16.796875 8.0625 +Q 21.484375 6.890625 26.703125 6.890625 +Q 35.15625 6.890625 40.078125 11.328125 +Q 45.015625 15.765625 45.015625 23.390625 +Q 45.015625 31 40.078125 35.4375 +Q 35.15625 39.890625 26.703125 39.890625 +Q 22.75 39.890625 18.8125 39.015625 +Q 14.890625 38.140625 10.796875 36.28125 +z +" id="DejaVuSans-53"/> + </defs> + <g transform="translate(91.380612 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-50"/> + <use x="127.246094" xlink:href="#DejaVuSans-53"/> + </g> + </g> + </g> + <g id="xtick_3"> + <g id="line2d_3"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="148.960163" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_3"> + <!-- 130 --> + <defs> + <path d="M 40.578125 39.3125 +Q 47.65625 37.796875 51.625 33 +Q 55.609375 28.21875 55.609375 21.1875 +Q 55.609375 10.40625 48.1875 4.484375 +Q 40.765625 -1.421875 27.09375 -1.421875 +Q 22.515625 -1.421875 17.65625 -0.515625 +Q 12.796875 0.390625 7.625 2.203125 +L 7.625 11.71875 +Q 11.71875 9.328125 16.59375 8.109375 +Q 21.484375 6.890625 26.8125 6.890625 +Q 36.078125 6.890625 40.9375 10.546875 +Q 45.796875 14.203125 45.796875 21.1875 +Q 45.796875 27.640625 41.28125 31.265625 +Q 36.765625 34.90625 28.71875 34.90625 +L 20.21875 34.90625 +L 20.21875 43.015625 +L 29.109375 43.015625 +Q 36.375 43.015625 40.234375 45.921875 +Q 44.09375 48.828125 44.09375 54.296875 +Q 44.09375 59.90625 40.109375 62.90625 +Q 36.140625 65.921875 28.71875 65.921875 +Q 24.65625 65.921875 20.015625 65.03125 +Q 15.375 64.15625 9.8125 62.3125 +L 9.8125 71.09375 +Q 15.4375 72.65625 20.34375 73.4375 +Q 25.25 74.21875 29.59375 74.21875 +Q 40.828125 74.21875 47.359375 69.109375 +Q 53.90625 64.015625 53.90625 55.328125 +Q 53.90625 49.265625 50.4375 45.09375 +Q 46.96875 40.921875 40.578125 39.3125 +z +" id="DejaVuSans-51"/> + </defs> + <g transform="translate(139.416413 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-51"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="xtick_4"> + <g id="line2d_4"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="196.995964" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_4"> + <!-- 135 --> + <g transform="translate(187.452214 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-51"/> + <use x="127.246094" xlink:href="#DejaVuSans-53"/> + </g> + </g> + </g> + <g id="xtick_5"> + <g id="line2d_5"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="245.031765" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_5"> + <!-- 140 --> + <defs> + <path d="M 37.796875 64.3125 +L 12.890625 25.390625 +L 37.796875 25.390625 +z +M 35.203125 72.90625 +L 47.609375 72.90625 +L 47.609375 25.390625 +L 58.015625 25.390625 +L 58.015625 17.1875 +L 47.609375 17.1875 +L 47.609375 0 +L 37.796875 0 +L 37.796875 17.1875 +L 4.890625 17.1875 +L 4.890625 26.703125 +z +" id="DejaVuSans-52"/> + </defs> + <g transform="translate(235.488015 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-52"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="xtick_6"> + <g id="line2d_6"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="293.067566" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_6"> + <!-- 145 --> + <g transform="translate(283.523816 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-52"/> + <use x="127.246094" xlink:href="#DejaVuSans-53"/> + </g> + </g> + </g> + <g id="xtick_7"> + <g id="line2d_7"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="341.103366" xlink:href="#mcdfcbc69ce" y="281.952"/> + </g> + </g> + <g id="text_7"> + <!-- 150 --> + <g transform="translate(331.559616 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-53"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="text_8"> + <!-- m/z --> + <defs> + <path d="M 52 44.1875 +Q 55.375 50.25 60.0625 53.125 +Q 64.75 56 71.09375 56 +Q 79.640625 56 84.28125 50.015625 +Q 88.921875 44.046875 88.921875 33.015625 +L 88.921875 0 +L 79.890625 0 +L 79.890625 32.71875 +Q 79.890625 40.578125 77.09375 44.375 +Q 74.3125 48.1875 68.609375 48.1875 +Q 61.625 48.1875 57.5625 43.546875 +Q 53.515625 38.921875 53.515625 30.90625 +L 53.515625 0 +L 44.484375 0 +L 44.484375 32.71875 +Q 44.484375 40.625 41.703125 44.40625 +Q 38.921875 48.1875 33.109375 48.1875 +Q 26.21875 48.1875 22.15625 43.53125 +Q 18.109375 38.875 18.109375 30.90625 +L 18.109375 0 +L 9.078125 0 +L 9.078125 54.6875 +L 18.109375 54.6875 +L 18.109375 46.1875 +Q 21.1875 51.21875 25.484375 53.609375 +Q 29.78125 56 35.6875 56 +Q 41.65625 56 45.828125 52.96875 +Q 50 49.953125 52 44.1875 +z +" id="DejaVuSans-109"/> + <path d="M 25.390625 72.90625 +L 33.6875 72.90625 +L 8.296875 -9.28125 +L 0 -9.28125 +z +" id="DejaVuSans-47"/> + <path d="M 5.515625 54.6875 +L 48.1875 54.6875 +L 48.1875 46.484375 +L 14.40625 7.171875 +L 48.1875 7.171875 +L 48.1875 0 +L 4.296875 0 +L 4.296875 8.203125 +L 38.09375 47.515625 +L 5.515625 47.515625 +z +" id="DejaVuSans-122"/> + </defs> + <g transform="translate(193.771094 310.228563)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-109"/> + <use x="97.412109" xlink:href="#DejaVuSans-47"/> + <use x="131.103516" xlink:href="#DejaVuSans-122"/> + </g> + </g> + </g> + <g id="matplotlib.axis_2"> + <g id="ytick_1"> + <g id="line2d_8"> + <defs> + <path d="M 0 0 +L -3.5 0 +" id="m8bdb8cdb05" style="stroke:#000000;stroke-width:0.8;"/> + </defs> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m8bdb8cdb05" y="270.864"/> + </g> + </g> + <g id="text_9"> + <!-- 0 --> + <g transform="translate(36.1375 274.663219)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_2"> + <g id="line2d_9"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m8bdb8cdb05" y="227.381647"/> + </g> + </g> + <g id="text_10"> + <!-- 100 --> + <g transform="translate(23.4125 231.180866)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_3"> + <g id="line2d_10"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m8bdb8cdb05" y="183.899294"/> + </g> + </g> + <g id="text_11"> + <!-- 200 --> + <g transform="translate(23.4125 187.698513)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-50"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_4"> + <g id="line2d_11"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m8bdb8cdb05" y="140.416941"/> + </g> + </g> + <g id="text_12"> + <!-- 300 --> + <g transform="translate(23.4125 144.21616)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-51"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_5"> + <g id="line2d_12"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m8bdb8cdb05" y="96.934588"/> + </g> + </g> + <g id="text_13"> + <!-- 400 --> + <g transform="translate(23.4125 100.733807)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-52"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_6"> + <g id="line2d_13"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m8bdb8cdb05" y="53.452235"/> + </g> + </g> + <g id="text_14"> + <!-- 500 --> + <g transform="translate(23.4125 57.251454)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-53"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="text_15"> + <!-- intensity --> + <defs> + <path d="M 9.421875 54.6875 +L 18.40625 54.6875 +L 18.40625 0 +L 9.421875 0 +z +M 9.421875 75.984375 +L 18.40625 75.984375 +L 18.40625 64.59375 +L 9.421875 64.59375 +z +" id="DejaVuSans-105"/> + <path d="M 54.890625 33.015625 +L 54.890625 0 +L 45.90625 0 +L 45.90625 32.71875 +Q 45.90625 40.484375 42.875 44.328125 +Q 39.84375 48.1875 33.796875 48.1875 +Q 26.515625 48.1875 22.3125 43.546875 +Q 18.109375 38.921875 18.109375 30.90625 +L 18.109375 0 +L 9.078125 0 +L 9.078125 54.6875 +L 18.109375 54.6875 +L 18.109375 46.1875 +Q 21.34375 51.125 25.703125 53.5625 +Q 30.078125 56 35.796875 56 +Q 45.21875 56 50.046875 50.171875 +Q 54.890625 44.34375 54.890625 33.015625 +z +" id="DejaVuSans-110"/> + <path d="M 18.3125 70.21875 +L 18.3125 54.6875 +L 36.8125 54.6875 +L 36.8125 47.703125 +L 18.3125 47.703125 +L 18.3125 18.015625 +Q 18.3125 11.328125 20.140625 9.421875 +Q 21.96875 7.515625 27.59375 7.515625 +L 36.8125 7.515625 +L 36.8125 0 +L 27.59375 0 +Q 17.1875 0 13.234375 3.875 +Q 9.28125 7.765625 9.28125 18.015625 +L 9.28125 47.703125 +L 2.6875 47.703125 +L 2.6875 54.6875 +L 9.28125 54.6875 +L 9.28125 70.21875 +z +" id="DejaVuSans-116"/> + <path d="M 56.203125 29.59375 +L 56.203125 25.203125 +L 14.890625 25.203125 +Q 15.484375 15.921875 20.484375 11.0625 +Q 25.484375 6.203125 34.421875 6.203125 +Q 39.59375 6.203125 44.453125 7.46875 +Q 49.3125 8.734375 54.109375 11.28125 +L 54.109375 2.78125 +Q 49.265625 0.734375 44.1875 -0.34375 +Q 39.109375 -1.421875 33.890625 -1.421875 +Q 20.796875 -1.421875 13.15625 6.1875 +Q 5.515625 13.8125 5.515625 26.8125 +Q 5.515625 40.234375 12.765625 48.109375 +Q 20.015625 56 32.328125 56 +Q 43.359375 56 49.78125 48.890625 +Q 56.203125 41.796875 56.203125 29.59375 +z +M 47.21875 32.234375 +Q 47.125 39.59375 43.09375 43.984375 +Q 39.0625 48.390625 32.421875 48.390625 +Q 24.90625 48.390625 20.390625 44.140625 +Q 15.875 39.890625 15.1875 32.171875 +z +" id="DejaVuSans-101"/> + <path d="M 44.28125 53.078125 +L 44.28125 44.578125 +Q 40.484375 46.53125 36.375 47.5 +Q 32.28125 48.484375 27.875 48.484375 +Q 21.1875 48.484375 17.84375 46.4375 +Q 14.5 44.390625 14.5 40.28125 +Q 14.5 37.15625 16.890625 35.375 +Q 19.28125 33.59375 26.515625 31.984375 +L 29.59375 31.296875 +Q 39.15625 29.25 43.1875 25.515625 +Q 47.21875 21.78125 47.21875 15.09375 +Q 47.21875 7.46875 41.1875 3.015625 +Q 35.15625 -1.421875 24.609375 -1.421875 +Q 20.21875 -1.421875 15.453125 -0.5625 +Q 10.6875 0.296875 5.421875 2 +L 5.421875 11.28125 +Q 10.40625 8.6875 15.234375 7.390625 +Q 20.0625 6.109375 24.8125 6.109375 +Q 31.15625 6.109375 34.5625 8.28125 +Q 37.984375 10.453125 37.984375 14.40625 +Q 37.984375 18.0625 35.515625 20.015625 +Q 33.0625 21.96875 24.703125 23.78125 +L 21.578125 24.515625 +Q 13.234375 26.265625 9.515625 29.90625 +Q 5.8125 33.546875 5.8125 39.890625 +Q 5.8125 47.609375 11.28125 51.796875 +Q 16.75 56 26.8125 56 +Q 31.78125 56 36.171875 55.265625 +Q 40.578125 54.546875 44.28125 53.078125 +z +" id="DejaVuSans-115"/> + <path d="M 32.171875 -5.078125 +Q 28.375 -14.84375 24.75 -17.8125 +Q 21.140625 -20.796875 15.09375 -20.796875 +L 7.90625 -20.796875 +L 7.90625 -13.28125 +L 13.1875 -13.28125 +Q 16.890625 -13.28125 18.9375 -11.515625 +Q 21 -9.765625 23.484375 -3.21875 +L 25.09375 0.875 +L 2.984375 54.6875 +L 12.5 54.6875 +L 29.59375 11.921875 +L 46.6875 54.6875 +L 56.203125 54.6875 +z +" id="DejaVuSans-121"/> + </defs> + <g transform="translate(17.332812 181.660563)rotate(-90)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-105"/> + <use x="27.783203" xlink:href="#DejaVuSans-110"/> + <use x="91.162109" xlink:href="#DejaVuSans-116"/> + <use x="130.371094" xlink:href="#DejaVuSans-101"/> + <use x="191.894531" xlink:href="#DejaVuSans-110"/> + <use x="255.273438" xlink:href="#DejaVuSans-115"/> + <use x="307.373047" xlink:href="#DejaVuSans-105"/> + <use x="335.15625" xlink:href="#DejaVuSans-116"/> + <use x="374.365234" xlink:href="#DejaVuSans-121"/> + </g> + </g> + </g> + <g id="line2d_14"> + <path clip-path="url(#p79b9d94240)" d="M 63.45 270.864 +L 63.45 191.726118 +" style="fill:none;stroke:#000000;stroke-linecap:square;"/> + </g> + <g id="line2d_15"> + <defs> + <path d="M 0 2 +C 0.530406 2 1.03916 1.789267 1.414214 1.414214 +C 1.789267 1.03916 2 0.530406 2 0 +C 2 -0.530406 1.789267 -1.03916 1.414214 -1.414214 +C 1.03916 -1.789267 0.530406 -2 0 -2 +C -0.530406 -2 -1.03916 -1.789267 -1.414214 -1.414214 +C -1.789267 -1.03916 -2 -0.530406 -2 0 +C -2 0.530406 -1.789267 1.03916 -1.414214 1.414214 +C -1.03916 1.789267 -0.530406 2 0 2 +z +" id="m0dbea8da8b" style="stroke:#000000;"/> + </defs> + <g clip-path="url(#p79b9d94240)"> + <use style="stroke:#000000;" x="63.45" xlink:href="#m0dbea8da8b" y="191.726118"/> + </g> + </g> + <g id="line2d_16"> + <path clip-path="url(#p79b9d94240)" d="M 332.776525 270.864 +L 332.776525 49.104 +" style="fill:none;stroke:#000000;stroke-linecap:square;"/> + </g> + <g id="line2d_17"> + <g clip-path="url(#p79b9d94240)"> + <use style="stroke:#000000;" x="332.776525" xlink:href="#m0dbea8da8b" y="49.104"/> + </g> + </g> + <g id="line2d_18"> + <path clip-path="url(#p79b9d94240)" d="M 342.45 270.864 +L 342.45 221.294118 +" style="fill:none;stroke:#000000;stroke-linecap:square;"/> + </g> + <g id="line2d_19"> + <g clip-path="url(#p79b9d94240)"> + <use style="stroke:#000000;" x="342.45" xlink:href="#m0dbea8da8b" y="221.294118"/> + </g> + </g> + <g id="patch_3"> + <path d="M 49.5 281.952 +L 49.5 38.016 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + <g id="patch_4"> + <path d="M 356.4 281.952 +L 356.4 38.016 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + <g id="patch_5"> + <path d="M 49.5 281.952 +L 356.4 281.952 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + <g id="patch_6"> + <path d="M 49.5 38.016 +L 356.4 38.016 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + </g> + </g> + <defs> + <clipPath id="p79b9d94240"> + <rect height="243.936" width="306.9" x="49.5" y="38.016"/> + </clipPath> + </defs> +</svg> +</td><td class="tdmax"> </td><td>148.128572</td><td>C8H20S</td><td>butyl-ethyl-dimethyl-lambda4-sulfane</td><td class="tdvar"></td><td> </td><td>1.0</td><td>0.37</td><td>0.0</td><td>0.0</td><td>0 / 1</td><td><a target="_blank" href="https://msbi.ipb-halle.de/MetFrag/landing.xhtml?FragmentPeakMatchAbsoluteMassDeviation=0.001&FragmentPeakMatchRelativeMassDeviation=5.0&DatabaseSearchRelativeMassDeviation=10.0&IonizedPrecursorMass=149.13513692&NeutralPrecursorMass=148.12786092&PrecursorIonMode=1&PeakList=121.099329887276_182;149.133267159026_510;150.14016979533_114&MetFragDatabaseType=PubChem">MetFragWeb</a></td><td><a target="_blank" href="https://pubchem.ncbi.nlm.nih.gov/#query=butyl-ethyl-dimethyl-lambda4-sulfane">PubChem</a>, <a target="_blank" href="https://www.genome.jp/dbget-bin/www_bfind_sub?mode=bfind&max_hit=1000&dbkey=kegg&keywords=butyl-ethyl-dimethyl-lambda4-sulfane">KEGG</a>, <a target="_blank" href="https://hmdb.ca/unearth/q?utf8=✓&query=butyl-ethyl-dimethyl-lambda4-sulfane&searcher=metabolites&button=">HMDB</a>, <a target="_blank" href="https://www.biocyc.org/substring-search?type=NIL&object=butyl-ethyl-dimethyl-lambda4-sulfane&quickSearch=Quick+Search">BioCyc</a>, <a target="_blank" href="https://www.ebi.ac.uk/chebi/advancedSearchFT.do?searchString=InChI=1S/C8H20S/c1-5-7-8-9(3,4)6-2/h5-8H2,1-4H3">ChEBI</a></td><td class="tdmax">InChI=1S/C8H20S/c1-5-7-8-9(3,4)6-2/h5-8H2,1-4H3</td></tr> +<tr style="vertical-align:center"><td class="tdmax"><!-- Created with matplotlib (https://matplotlib.org/) --> +<svg height="316.8pt" version="1.1" viewBox="0 0 396 316.8" width="396pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> + <defs> + <style type="text/css"> +*{stroke-linecap:butt;stroke-linejoin:round;} + </style> + </defs> + <g id="figure_1"> + <g id="patch_1"> + <path d="M 0 316.8 +L 396 316.8 +L 396 0 +L 0 0 +z +" style="fill:none;"/> + </g> + <g id="axes_1"> + <g id="patch_2"> + <path d="M 49.5 281.952 +L 356.4 281.952 +L 356.4 38.016 +L 49.5 38.016 +z +" style="fill:none;"/> + </g> + <g id="matplotlib.axis_1"> + <g id="xtick_1"> + <g id="line2d_1"> + <defs> + <path d="M 0 0 +L 0 3.5 +" id="m75651eaa2c" style="stroke:#000000;stroke-width:0.8;"/> + </defs> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="52.888562" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_1"> + <!-- 120 --> + <defs> + <path d="M 12.40625 8.296875 +L 28.515625 8.296875 +L 28.515625 63.921875 +L 10.984375 60.40625 +L 10.984375 69.390625 +L 28.421875 72.90625 +L 38.28125 72.90625 +L 38.28125 8.296875 +L 54.390625 8.296875 +L 54.390625 0 +L 12.40625 0 +z +" id="DejaVuSans-49"/> + <path d="M 19.1875 8.296875 +L 53.609375 8.296875 +L 53.609375 0 +L 7.328125 0 +L 7.328125 8.296875 +Q 12.9375 14.109375 22.625 23.890625 +Q 32.328125 33.6875 34.8125 36.53125 +Q 39.546875 41.84375 41.421875 45.53125 +Q 43.3125 49.21875 43.3125 52.78125 +Q 43.3125 58.59375 39.234375 62.25 +Q 35.15625 65.921875 28.609375 65.921875 +Q 23.96875 65.921875 18.8125 64.3125 +Q 13.671875 62.703125 7.8125 59.421875 +L 7.8125 69.390625 +Q 13.765625 71.78125 18.9375 73 +Q 24.125 74.21875 28.421875 74.21875 +Q 39.75 74.21875 46.484375 68.546875 +Q 53.21875 62.890625 53.21875 53.421875 +Q 53.21875 48.921875 51.53125 44.890625 +Q 49.859375 40.875 45.40625 35.40625 +Q 44.1875 33.984375 37.640625 27.21875 +Q 31.109375 20.453125 19.1875 8.296875 +z +" id="DejaVuSans-50"/> + <path d="M 31.78125 66.40625 +Q 24.171875 66.40625 20.328125 58.90625 +Q 16.5 51.421875 16.5 36.375 +Q 16.5 21.390625 20.328125 13.890625 +Q 24.171875 6.390625 31.78125 6.390625 +Q 39.453125 6.390625 43.28125 13.890625 +Q 47.125 21.390625 47.125 36.375 +Q 47.125 51.421875 43.28125 58.90625 +Q 39.453125 66.40625 31.78125 66.40625 +z +M 31.78125 74.21875 +Q 44.046875 74.21875 50.515625 64.515625 +Q 56.984375 54.828125 56.984375 36.375 +Q 56.984375 17.96875 50.515625 8.265625 +Q 44.046875 -1.421875 31.78125 -1.421875 +Q 19.53125 -1.421875 13.0625 8.265625 +Q 6.59375 17.96875 6.59375 36.375 +Q 6.59375 54.828125 13.0625 64.515625 +Q 19.53125 74.21875 31.78125 74.21875 +z +" id="DejaVuSans-48"/> + </defs> + <g transform="translate(43.344812 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-50"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="xtick_2"> + <g id="line2d_2"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="100.924362" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_2"> + <!-- 125 --> + <defs> + <path d="M 10.796875 72.90625 +L 49.515625 72.90625 +L 49.515625 64.59375 +L 19.828125 64.59375 +L 19.828125 46.734375 +Q 21.96875 47.46875 24.109375 47.828125 +Q 26.265625 48.1875 28.421875 48.1875 +Q 40.625 48.1875 47.75 41.5 +Q 54.890625 34.8125 54.890625 23.390625 +Q 54.890625 11.625 47.5625 5.09375 +Q 40.234375 -1.421875 26.90625 -1.421875 +Q 22.3125 -1.421875 17.546875 -0.640625 +Q 12.796875 0.140625 7.71875 1.703125 +L 7.71875 11.625 +Q 12.109375 9.234375 16.796875 8.0625 +Q 21.484375 6.890625 26.703125 6.890625 +Q 35.15625 6.890625 40.078125 11.328125 +Q 45.015625 15.765625 45.015625 23.390625 +Q 45.015625 31 40.078125 35.4375 +Q 35.15625 39.890625 26.703125 39.890625 +Q 22.75 39.890625 18.8125 39.015625 +Q 14.890625 38.140625 10.796875 36.28125 +z +" id="DejaVuSans-53"/> + </defs> + <g transform="translate(91.380612 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-50"/> + <use x="127.246094" xlink:href="#DejaVuSans-53"/> + </g> + </g> + </g> + <g id="xtick_3"> + <g id="line2d_3"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="148.960163" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_3"> + <!-- 130 --> + <defs> + <path d="M 40.578125 39.3125 +Q 47.65625 37.796875 51.625 33 +Q 55.609375 28.21875 55.609375 21.1875 +Q 55.609375 10.40625 48.1875 4.484375 +Q 40.765625 -1.421875 27.09375 -1.421875 +Q 22.515625 -1.421875 17.65625 -0.515625 +Q 12.796875 0.390625 7.625 2.203125 +L 7.625 11.71875 +Q 11.71875 9.328125 16.59375 8.109375 +Q 21.484375 6.890625 26.8125 6.890625 +Q 36.078125 6.890625 40.9375 10.546875 +Q 45.796875 14.203125 45.796875 21.1875 +Q 45.796875 27.640625 41.28125 31.265625 +Q 36.765625 34.90625 28.71875 34.90625 +L 20.21875 34.90625 +L 20.21875 43.015625 +L 29.109375 43.015625 +Q 36.375 43.015625 40.234375 45.921875 +Q 44.09375 48.828125 44.09375 54.296875 +Q 44.09375 59.90625 40.109375 62.90625 +Q 36.140625 65.921875 28.71875 65.921875 +Q 24.65625 65.921875 20.015625 65.03125 +Q 15.375 64.15625 9.8125 62.3125 +L 9.8125 71.09375 +Q 15.4375 72.65625 20.34375 73.4375 +Q 25.25 74.21875 29.59375 74.21875 +Q 40.828125 74.21875 47.359375 69.109375 +Q 53.90625 64.015625 53.90625 55.328125 +Q 53.90625 49.265625 50.4375 45.09375 +Q 46.96875 40.921875 40.578125 39.3125 +z +" id="DejaVuSans-51"/> + </defs> + <g transform="translate(139.416413 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-51"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="xtick_4"> + <g id="line2d_4"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="196.995964" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_4"> + <!-- 135 --> + <g transform="translate(187.452214 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-51"/> + <use x="127.246094" xlink:href="#DejaVuSans-53"/> + </g> + </g> + </g> + <g id="xtick_5"> + <g id="line2d_5"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="245.031765" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_5"> + <!-- 140 --> + <defs> + <path d="M 37.796875 64.3125 +L 12.890625 25.390625 +L 37.796875 25.390625 +z +M 35.203125 72.90625 +L 47.609375 72.90625 +L 47.609375 25.390625 +L 58.015625 25.390625 +L 58.015625 17.1875 +L 47.609375 17.1875 +L 47.609375 0 +L 37.796875 0 +L 37.796875 17.1875 +L 4.890625 17.1875 +L 4.890625 26.703125 +z +" id="DejaVuSans-52"/> + </defs> + <g transform="translate(235.488015 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-52"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="xtick_6"> + <g id="line2d_6"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="293.067566" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_6"> + <!-- 145 --> + <g transform="translate(283.523816 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-52"/> + <use x="127.246094" xlink:href="#DejaVuSans-53"/> + </g> + </g> + </g> + <g id="xtick_7"> + <g id="line2d_7"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="341.103366" xlink:href="#m75651eaa2c" y="281.952"/> + </g> + </g> + <g id="text_7"> + <!-- 150 --> + <g transform="translate(331.559616 296.550438)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-53"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="text_8"> + <!-- m/z --> + <defs> + <path d="M 52 44.1875 +Q 55.375 50.25 60.0625 53.125 +Q 64.75 56 71.09375 56 +Q 79.640625 56 84.28125 50.015625 +Q 88.921875 44.046875 88.921875 33.015625 +L 88.921875 0 +L 79.890625 0 +L 79.890625 32.71875 +Q 79.890625 40.578125 77.09375 44.375 +Q 74.3125 48.1875 68.609375 48.1875 +Q 61.625 48.1875 57.5625 43.546875 +Q 53.515625 38.921875 53.515625 30.90625 +L 53.515625 0 +L 44.484375 0 +L 44.484375 32.71875 +Q 44.484375 40.625 41.703125 44.40625 +Q 38.921875 48.1875 33.109375 48.1875 +Q 26.21875 48.1875 22.15625 43.53125 +Q 18.109375 38.875 18.109375 30.90625 +L 18.109375 0 +L 9.078125 0 +L 9.078125 54.6875 +L 18.109375 54.6875 +L 18.109375 46.1875 +Q 21.1875 51.21875 25.484375 53.609375 +Q 29.78125 56 35.6875 56 +Q 41.65625 56 45.828125 52.96875 +Q 50 49.953125 52 44.1875 +z +" id="DejaVuSans-109"/> + <path d="M 25.390625 72.90625 +L 33.6875 72.90625 +L 8.296875 -9.28125 +L 0 -9.28125 +z +" id="DejaVuSans-47"/> + <path d="M 5.515625 54.6875 +L 48.1875 54.6875 +L 48.1875 46.484375 +L 14.40625 7.171875 +L 48.1875 7.171875 +L 48.1875 0 +L 4.296875 0 +L 4.296875 8.203125 +L 38.09375 47.515625 +L 5.515625 47.515625 +z +" id="DejaVuSans-122"/> + </defs> + <g transform="translate(193.771094 310.228563)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-109"/> + <use x="97.412109" xlink:href="#DejaVuSans-47"/> + <use x="131.103516" xlink:href="#DejaVuSans-122"/> + </g> + </g> + </g> + <g id="matplotlib.axis_2"> + <g id="ytick_1"> + <g id="line2d_8"> + <defs> + <path d="M 0 0 +L -3.5 0 +" id="m43afdc783f" style="stroke:#000000;stroke-width:0.8;"/> + </defs> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m43afdc783f" y="270.864"/> + </g> + </g> + <g id="text_9"> + <!-- 0 --> + <g transform="translate(36.1375 274.663219)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_2"> + <g id="line2d_9"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m43afdc783f" y="227.381647"/> + </g> + </g> + <g id="text_10"> + <!-- 100 --> + <g transform="translate(23.4125 231.180866)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-49"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_3"> + <g id="line2d_10"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m43afdc783f" y="183.899294"/> + </g> + </g> + <g id="text_11"> + <!-- 200 --> + <g transform="translate(23.4125 187.698513)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-50"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_4"> + <g id="line2d_11"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m43afdc783f" y="140.416941"/> + </g> + </g> + <g id="text_12"> + <!-- 300 --> + <g transform="translate(23.4125 144.21616)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-51"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_5"> + <g id="line2d_12"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m43afdc783f" y="96.934588"/> + </g> + </g> + <g id="text_13"> + <!-- 400 --> + <g transform="translate(23.4125 100.733807)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-52"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="ytick_6"> + <g id="line2d_13"> + <g> + <use style="stroke:#000000;stroke-width:0.8;" x="49.5" xlink:href="#m43afdc783f" y="53.452235"/> + </g> + </g> + <g id="text_14"> + <!-- 500 --> + <g transform="translate(23.4125 57.251454)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-53"/> + <use x="63.623047" xlink:href="#DejaVuSans-48"/> + <use x="127.246094" xlink:href="#DejaVuSans-48"/> + </g> + </g> + </g> + <g id="text_15"> + <!-- intensity --> + <defs> + <path d="M 9.421875 54.6875 +L 18.40625 54.6875 +L 18.40625 0 +L 9.421875 0 +z +M 9.421875 75.984375 +L 18.40625 75.984375 +L 18.40625 64.59375 +L 9.421875 64.59375 +z +" id="DejaVuSans-105"/> + <path d="M 54.890625 33.015625 +L 54.890625 0 +L 45.90625 0 +L 45.90625 32.71875 +Q 45.90625 40.484375 42.875 44.328125 +Q 39.84375 48.1875 33.796875 48.1875 +Q 26.515625 48.1875 22.3125 43.546875 +Q 18.109375 38.921875 18.109375 30.90625 +L 18.109375 0 +L 9.078125 0 +L 9.078125 54.6875 +L 18.109375 54.6875 +L 18.109375 46.1875 +Q 21.34375 51.125 25.703125 53.5625 +Q 30.078125 56 35.796875 56 +Q 45.21875 56 50.046875 50.171875 +Q 54.890625 44.34375 54.890625 33.015625 +z +" id="DejaVuSans-110"/> + <path d="M 18.3125 70.21875 +L 18.3125 54.6875 +L 36.8125 54.6875 +L 36.8125 47.703125 +L 18.3125 47.703125 +L 18.3125 18.015625 +Q 18.3125 11.328125 20.140625 9.421875 +Q 21.96875 7.515625 27.59375 7.515625 +L 36.8125 7.515625 +L 36.8125 0 +L 27.59375 0 +Q 17.1875 0 13.234375 3.875 +Q 9.28125 7.765625 9.28125 18.015625 +L 9.28125 47.703125 +L 2.6875 47.703125 +L 2.6875 54.6875 +L 9.28125 54.6875 +L 9.28125 70.21875 +z +" id="DejaVuSans-116"/> + <path d="M 56.203125 29.59375 +L 56.203125 25.203125 +L 14.890625 25.203125 +Q 15.484375 15.921875 20.484375 11.0625 +Q 25.484375 6.203125 34.421875 6.203125 +Q 39.59375 6.203125 44.453125 7.46875 +Q 49.3125 8.734375 54.109375 11.28125 +L 54.109375 2.78125 +Q 49.265625 0.734375 44.1875 -0.34375 +Q 39.109375 -1.421875 33.890625 -1.421875 +Q 20.796875 -1.421875 13.15625 6.1875 +Q 5.515625 13.8125 5.515625 26.8125 +Q 5.515625 40.234375 12.765625 48.109375 +Q 20.015625 56 32.328125 56 +Q 43.359375 56 49.78125 48.890625 +Q 56.203125 41.796875 56.203125 29.59375 +z +M 47.21875 32.234375 +Q 47.125 39.59375 43.09375 43.984375 +Q 39.0625 48.390625 32.421875 48.390625 +Q 24.90625 48.390625 20.390625 44.140625 +Q 15.875 39.890625 15.1875 32.171875 +z +" id="DejaVuSans-101"/> + <path d="M 44.28125 53.078125 +L 44.28125 44.578125 +Q 40.484375 46.53125 36.375 47.5 +Q 32.28125 48.484375 27.875 48.484375 +Q 21.1875 48.484375 17.84375 46.4375 +Q 14.5 44.390625 14.5 40.28125 +Q 14.5 37.15625 16.890625 35.375 +Q 19.28125 33.59375 26.515625 31.984375 +L 29.59375 31.296875 +Q 39.15625 29.25 43.1875 25.515625 +Q 47.21875 21.78125 47.21875 15.09375 +Q 47.21875 7.46875 41.1875 3.015625 +Q 35.15625 -1.421875 24.609375 -1.421875 +Q 20.21875 -1.421875 15.453125 -0.5625 +Q 10.6875 0.296875 5.421875 2 +L 5.421875 11.28125 +Q 10.40625 8.6875 15.234375 7.390625 +Q 20.0625 6.109375 24.8125 6.109375 +Q 31.15625 6.109375 34.5625 8.28125 +Q 37.984375 10.453125 37.984375 14.40625 +Q 37.984375 18.0625 35.515625 20.015625 +Q 33.0625 21.96875 24.703125 23.78125 +L 21.578125 24.515625 +Q 13.234375 26.265625 9.515625 29.90625 +Q 5.8125 33.546875 5.8125 39.890625 +Q 5.8125 47.609375 11.28125 51.796875 +Q 16.75 56 26.8125 56 +Q 31.78125 56 36.171875 55.265625 +Q 40.578125 54.546875 44.28125 53.078125 +z +" id="DejaVuSans-115"/> + <path d="M 32.171875 -5.078125 +Q 28.375 -14.84375 24.75 -17.8125 +Q 21.140625 -20.796875 15.09375 -20.796875 +L 7.90625 -20.796875 +L 7.90625 -13.28125 +L 13.1875 -13.28125 +Q 16.890625 -13.28125 18.9375 -11.515625 +Q 21 -9.765625 23.484375 -3.21875 +L 25.09375 0.875 +L 2.984375 54.6875 +L 12.5 54.6875 +L 29.59375 11.921875 +L 46.6875 54.6875 +L 56.203125 54.6875 +z +" id="DejaVuSans-121"/> + </defs> + <g transform="translate(17.332812 181.660563)rotate(-90)scale(0.1 -0.1)"> + <use xlink:href="#DejaVuSans-105"/> + <use x="27.783203" xlink:href="#DejaVuSans-110"/> + <use x="91.162109" xlink:href="#DejaVuSans-116"/> + <use x="130.371094" xlink:href="#DejaVuSans-101"/> + <use x="191.894531" xlink:href="#DejaVuSans-110"/> + <use x="255.273438" xlink:href="#DejaVuSans-115"/> + <use x="307.373047" xlink:href="#DejaVuSans-105"/> + <use x="335.15625" xlink:href="#DejaVuSans-116"/> + <use x="374.365234" xlink:href="#DejaVuSans-121"/> + </g> + </g> + </g> + <g id="line2d_14"> + <path clip-path="url(#p0594580799)" d="M 63.45 270.864 +L 63.45 191.726118 +" style="fill:none;stroke:#000000;stroke-linecap:square;"/> + </g> + <g id="line2d_15"> + <defs> + <path d="M 0 2 +C 0.530406 2 1.03916 1.789267 1.414214 1.414214 +C 1.789267 1.03916 2 0.530406 2 0 +C 2 -0.530406 1.789267 -1.03916 1.414214 -1.414214 +C 1.03916 -1.789267 0.530406 -2 0 -2 +C -0.530406 -2 -1.03916 -1.789267 -1.414214 -1.414214 +C -1.789267 -1.03916 -2 -0.530406 -2 0 +C -2 0.530406 -1.789267 1.03916 -1.414214 1.414214 +C -1.03916 1.789267 -0.530406 2 0 2 +z +" id="mfbdc5fcc44" style="stroke:#000000;"/> + </defs> + <g clip-path="url(#p0594580799)"> + <use style="stroke:#000000;" x="63.45" xlink:href="#mfbdc5fcc44" y="191.726118"/> + </g> + </g> + <g id="line2d_16"> + <path clip-path="url(#p0594580799)" d="M 332.776525 270.864 +L 332.776525 49.104 +" style="fill:none;stroke:#000000;stroke-linecap:square;"/> + </g> + <g id="line2d_17"> + <g clip-path="url(#p0594580799)"> + <use style="stroke:#000000;" x="332.776525" xlink:href="#mfbdc5fcc44" y="49.104"/> + </g> + </g> + <g id="line2d_18"> + <path clip-path="url(#p0594580799)" d="M 342.45 270.864 +L 342.45 221.294118 +" style="fill:none;stroke:#000000;stroke-linecap:square;"/> + </g> + <g id="line2d_19"> + <g clip-path="url(#p0594580799)"> + <use style="stroke:#000000;" x="342.45" xlink:href="#mfbdc5fcc44" y="221.294118"/> + </g> + </g> + <g id="patch_3"> + <path d="M 49.5 281.952 +L 49.5 38.016 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + <g id="patch_4"> + <path d="M 356.4 281.952 +L 356.4 38.016 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + <g id="patch_5"> + <path d="M 49.5 281.952 +L 356.4 281.952 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + <g id="patch_6"> + <path d="M 49.5 38.016 +L 356.4 38.016 +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> + </g> + </g> + </g> + <defs> + <clipPath id="p0594580799"> + <rect height="243.936" width="306.9" x="49.5" y="38.016"/> + </clipPath> + </defs> +</svg> +</td><td class="tdmax"> </td><td>148.128572</td><td>C8H20S</td><td>trimethyl(3-methylbutyl)-lambda4-sulfane</td><td class="tdvar">SCHEMBL17037255</td><td> </td><td>0.997</td><td>0.369</td><td>0.0</td><td>0.0</td><td>0 / 1</td><td><a target="_blank" href="https://msbi.ipb-halle.de/MetFrag/landing.xhtml?FragmentPeakMatchAbsoluteMassDeviation=0.001&FragmentPeakMatchRelativeMassDeviation=5.0&DatabaseSearchRelativeMassDeviation=10.0&IonizedPrecursorMass=149.13513692&NeutralPrecursorMass=148.12786092&PrecursorIonMode=1&PeakList=121.099329887276_182;149.133267159026_510;150.14016979533_114&MetFragDatabaseType=PubChem">MetFragWeb</a></td><td><a target="_blank" href="https://pubchem.ncbi.nlm.nih.gov/#query=trimethyl(3-methylbutyl)-lambda4-sulfane">PubChem</a>, <a target="_blank" href="https://www.genome.jp/dbget-bin/www_bfind_sub?mode=bfind&max_hit=1000&dbkey=kegg&keywords=trimethyl(3-methylbutyl)-lambda4-sulfane">KEGG</a>, <a target="_blank" href="https://hmdb.ca/unearth/q?utf8=✓&query=trimethyl(3-methylbutyl)-lambda4-sulfane&searcher=metabolites&button=">HMDB</a>, <a target="_blank" href="https://www.biocyc.org/substring-search?type=NIL&object=trimethyl(3-methylbutyl)-lambda4-sulfane&quickSearch=Quick+Search">BioCyc</a>, <a target="_blank" href="https://www.ebi.ac.uk/chebi/advancedSearchFT.do?searchString=InChI=1S/C8H20S/c1-8(2)6-7-9(3,4)5/h8H,6-7H2,1-5H3">ChEBI</a></td><td class="tdmax">InChI=1S/C8H20S/c1-8(2)6-7-9(3,4)5/h8H,6-7H2,1-5H3</td></tr> +</table> + +</body> +</html>