Mercurial > repos > cpt > cpt_intron_detection
comparison cpt_intron_detect/gff3.py @ 0:1a19092729be draft
Uploaded
author | cpt |
---|---|
date | Fri, 13 May 2022 05:08:54 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1a19092729be |
---|---|
1 import copy | |
2 import logging | |
3 | |
4 log = logging.getLogger() | |
5 log.setLevel(logging.WARN) | |
6 | |
7 | |
8 def feature_lambda( | |
9 feature_list, | |
10 test, | |
11 test_kwargs, | |
12 subfeatures=True, | |
13 parent=None, | |
14 invert=False, | |
15 recurse=True, | |
16 ): | |
17 """Recursively search through features, testing each with a test function, yielding matches. | |
18 | |
19 GFF3 is a hierachical data structure, so we need to be able to recursively | |
20 search through features. E.g. if you're looking for a feature with | |
21 ID='bob.42', you can't just do a simple list comprehension with a test | |
22 case. You don't know how deeply burried bob.42 will be in the feature tree. This is where feature_lambda steps in. | |
23 | |
24 :type feature_list: list | |
25 :param feature_list: an iterable of features | |
26 | |
27 :type test: function reference | |
28 :param test: a closure with the method signature (feature, **kwargs) where | |
29 the kwargs are those passed in the next argument. This | |
30 function should return True or False, True if the feature is | |
31 to be yielded as part of the main feature_lambda function, or | |
32 False if it is to be ignored. This function CAN mutate the | |
33 features passed to it (think "apply"). | |
34 | |
35 :type test_kwargs: dictionary | |
36 :param test_kwargs: kwargs to pass to your closure when it is called. | |
37 | |
38 :type subfeatures: boolean | |
39 :param subfeatures: when a feature is matched, should just that feature be | |
40 yielded to the caller, or should the entire sub_feature | |
41 tree for that feature be included? subfeatures=True is | |
42 useful in cases such as searching for a gene feature, | |
43 and wanting to know what RBS/Shine_Dalgarno_sequences | |
44 are in the sub_feature tree (which can be accomplished | |
45 with two feature_lambda calls). subfeatures=False is | |
46 useful in cases when you want to process (and possibly | |
47 return) the entire feature tree, such as applying a | |
48 qualifier to every single feature. | |
49 | |
50 :type invert: boolean | |
51 :param invert: Negate/invert the result of the filter. | |
52 | |
53 :rtype: yielded list | |
54 :return: Yields a list of matching features. | |
55 """ | |
56 # Either the top level set of [features] or the subfeature attribute | |
57 for feature in feature_list: | |
58 feature._parent = parent | |
59 if not parent: | |
60 # Set to self so we cannot go above root. | |
61 feature._parent = feature | |
62 test_result = test(feature, **test_kwargs) | |
63 # if (not invert and test_result) or (invert and not test_result): | |
64 if invert ^ test_result: | |
65 if not subfeatures: | |
66 feature_copy = copy.deepcopy(feature) | |
67 feature_copy.sub_features = list() | |
68 yield feature_copy | |
69 else: | |
70 yield feature | |
71 | |
72 if recurse and hasattr(feature, "sub_features"): | |
73 for x in feature_lambda( | |
74 feature.sub_features, | |
75 test, | |
76 test_kwargs, | |
77 subfeatures=subfeatures, | |
78 parent=feature, | |
79 invert=invert, | |
80 recurse=recurse, | |
81 ): | |
82 yield x | |
83 | |
84 | |
85 def fetchParent(feature): | |
86 if not hasattr(feature, "_parent") or feature._parent is None: | |
87 return feature | |
88 else: | |
89 return fetchParent(feature._parent) | |
90 | |
91 | |
92 def feature_test_true(feature, **kwargs): | |
93 return True | |
94 | |
95 | |
96 def feature_test_type(feature, **kwargs): | |
97 if "type" in kwargs: | |
98 return str(feature.type).upper() == str(kwargs["type"]).upper() | |
99 elif "types" in kwargs: | |
100 for x in kwargs["types"]: | |
101 if str(feature.type).upper() == str(x).upper(): | |
102 return True | |
103 return False | |
104 raise Exception("Incorrect feature_test_type call, need type or types") | |
105 | |
106 | |
107 def feature_test_qual_value(feature, **kwargs): | |
108 """Test qualifier values. | |
109 | |
110 For every feature, check that at least one value in | |
111 feature.quailfiers(kwargs['qualifier']) is in kwargs['attribute_list'] | |
112 """ | |
113 if isinstance(kwargs["qualifier"], list): | |
114 for qualifier in kwargs["qualifier"]: | |
115 for attribute_value in feature.qualifiers.get(qualifier, []): | |
116 if attribute_value in kwargs["attribute_list"]: | |
117 return True | |
118 else: | |
119 for attribute_value in feature.qualifiers.get(kwargs["qualifier"], []): | |
120 if attribute_value in kwargs["attribute_list"]: | |
121 return True | |
122 return False | |
123 | |
124 | |
125 def feature_test_location(feature, **kwargs): | |
126 if "strand" in kwargs: | |
127 if feature.location.strand != kwargs["strand"]: | |
128 return False | |
129 | |
130 return feature.location.start <= kwargs["loc"] <= feature.location.end | |
131 | |
132 | |
133 def feature_test_quals(feature, **kwargs): | |
134 """ | |
135 Example:: | |
136 | |
137 a = Feature(qualifiers={'Note': ['Some notes', 'Aasdf']}) | |
138 | |
139 # Check if a contains a Note | |
140 feature_test_quals(a, {'Note': None}) # Returns True | |
141 feature_test_quals(a, {'Product': None}) # Returns False | |
142 | |
143 # Check if a contains a note with specific value | |
144 feature_test_quals(a, {'Note': ['ome']}) # Returns True | |
145 | |
146 # Check if a contains a note with specific value | |
147 feature_test_quals(a, {'Note': ['other']}) # Returns False | |
148 """ | |
149 for key in kwargs: | |
150 if key not in feature.qualifiers: | |
151 return False | |
152 | |
153 # Key is present, no value specified | |
154 if kwargs[key] is None: | |
155 return True | |
156 | |
157 # Otherwise there is a key value we're looking for. | |
158 # so we make a list of matches | |
159 matches = [] | |
160 # And check all of the feature qualifier valuse | |
161 for value in feature.qualifiers[key]: | |
162 # For that kwargs[key] value | |
163 for x in kwargs[key]: | |
164 matches.append(x in value) | |
165 | |
166 # If none matched, then we return false. | |
167 if not any(matches): | |
168 return False | |
169 | |
170 return True | |
171 | |
172 | |
173 def feature_test_contains(feature, **kwargs): | |
174 if "index" in kwargs: | |
175 return feature.location.start < kwargs["index"] < feature.location.end | |
176 elif "range" in kwargs: | |
177 return ( | |
178 feature.location.start < kwargs["range"]["start"] < feature.location.end | |
179 and feature.location.start < kwargs["range"]["end"] < feature.location.end | |
180 ) | |
181 else: | |
182 raise RuntimeError("Must use index or range keyword") | |
183 | |
184 | |
185 def get_id(feature=None, parent_prefix=None): | |
186 result = "" | |
187 if parent_prefix is not None: | |
188 result += parent_prefix + "|" | |
189 if "locus_tag" in feature.qualifiers: | |
190 result += feature.qualifiers["locus_tag"][0] | |
191 elif "gene" in feature.qualifiers: | |
192 result += feature.qualifiers["gene"][0] | |
193 elif "Gene" in feature.qualifiers: | |
194 result += feature.qualifiers["Gene"][0] | |
195 elif "product" in feature.qualifiers: | |
196 result += feature.qualifiers["product"][0] | |
197 elif "Product" in feature.qualifiers: | |
198 result += feature.qualifiers["Product"][0] | |
199 elif "Name" in feature.qualifiers: | |
200 result += feature.qualifiers["Name"][0] | |
201 else: | |
202 return feature.id | |
203 # Leaving in case bad things happen. | |
204 # result += '%s_%s_%s_%s' % ( | |
205 # feature.id, | |
206 # feature.location.start, | |
207 # feature.location.end, | |
208 # feature.location.strand | |
209 # ) | |
210 return result | |
211 | |
212 | |
213 def get_gff3_id(gene): | |
214 return gene.qualifiers.get("Name", [gene.id])[0] | |
215 | |
216 | |
217 def ensure_location_in_bounds(start=0, end=0, parent_length=0): | |
218 # This prevents frameshift errors | |
219 while start < 0: | |
220 start += 3 | |
221 while end < 0: | |
222 end += 3 | |
223 while start > parent_length: | |
224 start -= 3 | |
225 while end > parent_length: | |
226 end -= 3 | |
227 return (start, end) | |
228 | |
229 | |
230 def coding_genes(feature_list): | |
231 for x in genes(feature_list): | |
232 if ( | |
233 len( | |
234 list( | |
235 feature_lambda( | |
236 x.sub_features, | |
237 feature_test_type, | |
238 {"type": "CDS"}, | |
239 subfeatures=False, | |
240 ) | |
241 ) | |
242 ) | |
243 > 0 | |
244 ): | |
245 yield x | |
246 | |
247 | |
248 def genes(feature_list, feature_type="gene", sort=False): | |
249 """ | |
250 Simple filter to extract gene features from the feature set. | |
251 """ | |
252 | |
253 if not sort: | |
254 for x in feature_lambda( | |
255 feature_list, feature_test_type, {"type": feature_type}, subfeatures=True | |
256 ): | |
257 yield x | |
258 else: | |
259 data = list(genes(feature_list, feature_type=feature_type, sort=False)) | |
260 data = sorted(data, key=lambda feature: feature.location.start) | |
261 for x in data: | |
262 yield x | |
263 | |
264 | |
265 def wa_unified_product_name(feature): | |
266 """ | |
267 Try and figure out a name. We gave conflicting instructions, so | |
268 this isn't as trivial as it should be. Sometimes it will be in | |
269 'product' or 'Product', othertimes in 'Name' | |
270 """ | |
271 # Manually applied tags. | |
272 protein_product = feature.qualifiers.get( | |
273 "product", feature.qualifiers.get("Product", [None]) | |
274 )[0] | |
275 | |
276 # If neither of those are available ... | |
277 if protein_product is None: | |
278 # And there's a name... | |
279 if "Name" in feature.qualifiers: | |
280 if not is_uuid(feature.qualifiers["Name"][0]): | |
281 protein_product = feature.qualifiers["Name"][0] | |
282 | |
283 return protein_product | |
284 | |
285 | |
286 def is_uuid(name): | |
287 return name.count("-") == 4 and len(name) == 36 | |
288 | |
289 | |
290 def get_rbs_from(gene): | |
291 # Normal RBS annotation types | |
292 rbs_rbs = list( | |
293 feature_lambda( | |
294 gene.sub_features, feature_test_type, {"type": "RBS"}, subfeatures=False | |
295 ) | |
296 ) | |
297 rbs_sds = list( | |
298 feature_lambda( | |
299 gene.sub_features, | |
300 feature_test_type, | |
301 {"type": "Shine_Dalgarno_sequence"}, | |
302 subfeatures=False, | |
303 ) | |
304 ) | |
305 # Fraking apollo | |
306 apollo_exons = list( | |
307 feature_lambda( | |
308 gene.sub_features, feature_test_type, {"type": "exon"}, subfeatures=False | |
309 ) | |
310 ) | |
311 apollo_exons = [x for x in apollo_exons if len(x) < 10] | |
312 # These are more NCBI's style | |
313 regulatory_elements = list( | |
314 feature_lambda( | |
315 gene.sub_features, | |
316 feature_test_type, | |
317 {"type": "regulatory"}, | |
318 subfeatures=False, | |
319 ) | |
320 ) | |
321 rbs_regulatory = list( | |
322 feature_lambda( | |
323 regulatory_elements, | |
324 feature_test_quals, | |
325 {"regulatory_class": ["ribosome_binding_site"]}, | |
326 subfeatures=False, | |
327 ) | |
328 ) | |
329 # Here's hoping you find just one ;) | |
330 return rbs_rbs + rbs_sds + rbs_regulatory + apollo_exons | |
331 | |
332 | |
333 def nice_name(record): | |
334 """ | |
335 get the real name rather than NCBI IDs and so on. If fails, will return record.id | |
336 """ | |
337 name = record.id | |
338 likely_parental_contig = list(genes(record.features, feature_type="contig")) | |
339 if len(likely_parental_contig) == 1: | |
340 name = likely_parental_contig[0].qualifiers.get("organism", [name])[0] | |
341 return name | |
342 | |
343 | |
344 def fsort(it): | |
345 for i in sorted(it, key=lambda x: int(x.location.start)): | |
346 yield i |