view cpt_intron_detect/intron_detection.py @ 0:1a19092729be draft

Uploaded
author cpt
date Fri, 13 May 2022 05:08:54 +0000
parents
children
line wrap: on
line source

#!/usr/bin/env python
import sys
import re
import itertools
import argparse
import hashlib
import copy
from CPT_GFFParser import gffParse, gffWrite, gffSeqFeature
from Bio.Blast import NCBIXML
from Bio.SeqFeature import SeqFeature, FeatureLocation
from gff3 import feature_lambda
from collections import OrderedDict
import logging

logging.basicConfig(level=logging.DEBUG)
log = logging.getLogger()


def parse_xml(blastxml, thresh):
    """ Parses xml file to get desired info (genes, hits, etc) """
    blast = []
    discarded_records = 0
    totLen = 0
    for iter_num, blast_record in enumerate(NCBIXML.parse(blastxml), 1):
        blast_gene = []
        align_num = 0
        for alignment in blast_record.alignments:
            align_num += 1
            # hit_gis = alignment.hit_id + alignment.hit_def
            # gi_nos = [str(gi) for gi in re.findall('(?<=gi\|)\d{9,10}', hit_gis)]
            gi_nos = str(alignment.accession)

            for hsp in alignment.hsps:
                x = float(hsp.identities - 1) / ((hsp.query_end) - hsp.query_start)
                if x < thresh:
                    discarded_records += 1
                    continue
                nice_name = blast_record.query

                if " " in nice_name:
                    nice_name = nice_name[0 : nice_name.index(" ")]

                blast_gene.append(
                    {
                        "gi_nos": gi_nos,
                        "sbjct_length": alignment.length,
                        "query_length": blast_record.query_length,
                        "sbjct_range": (hsp.sbjct_start, hsp.sbjct_end),
                        "query_range": (hsp.query_start, hsp.query_end),
                        "name": nice_name,
                        "evalue": hsp.expect,
                        "identity": hsp.identities,
                        "identity_percent": x,
                        "hit_num": align_num,
                        "iter_num": iter_num,
                        "match_id": alignment.title.partition(">")[0],
                    }
                )

        blast.append(blast_gene)
        totLen += len(blast_gene)
    log.debug("parse_blastxml %s -> %s", totLen + discarded_records, totLen)
    return blast


def filter_lone_clusters(clusters):
    """ Removes all clusters with only one member and those with no hits """
    filtered_clusters = {}
    for key in clusters:
        if len(clusters[key]) > 1 and len(key) > 0:
            filtered_clusters[key] = clusters[key]
    log.debug("filter_lone_clusters %s -> %s", len(clusters), len(filtered_clusters))
    return filtered_clusters


def test_true(feature, **kwargs):
    return True


def parse_gff(gff3):
    """ Extracts strand and start location to be used in cluster filtering """
    log.debug("parse_gff3")
    gff_info = {}
    _rec = None
    for rec in gffParse(gff3):
        endBase = len(rec.seq)

        _rec = rec
        _rec.annotations = {}
        for feat in feature_lambda(rec.features, test_true, {}, subfeatures=False):
            if feat.type == "CDS":
                if "Name" in feat.qualifiers.keys():
                    CDSname = feat.qualifiers["Name"]
                else:
                    CDSname = feat.qualifiers["ID"]
                gff_info[feat.id] = {
                    "strand": feat.strand,
                    "start": feat.location.start,
                    "end": feat.location.end,
                    "loc": feat.location,
                    "feat": feat,
                    "name": CDSname,
                }

    gff_info = OrderedDict(sorted(gff_info.items(), key=lambda k: k[1]["start"]))
    # endBase = 0
    for i, feat_id in enumerate(gff_info):
        gff_info[feat_id].update({"index": i})
        if gff_info[feat_id]["loc"].end > endBase:
            endBase = gff_info[feat_id]["loc"].end

    return dict(gff_info), _rec, endBase


def all_same(genes_list):
    """ Returns True if all gene names in cluster are identical """
    return all(gene["name"] == genes_list[0]["name"] for gene in genes_list[1:])


def remove_duplicates(clusters):
    """ Removes clusters with multiple members but only one gene name """
    filtered_clusters = {}
    for key in clusters:
        if all_same(clusters[key]):
            continue
        else:
            filtered_clusters[key] = clusters[key]
    log.debug("remove_duplicates %s -> %s", len(clusters), len(filtered_clusters))
    return filtered_clusters


class IntronFinder(object):
    """ IntronFinder objects are lists that contain a list of hits for every gene """

    def __init__(self, gff3, blastp, thresh):
        self.blast = []
        self.clusters = {}
        self.gff_info = {}
        self.length = 0

        (self.gff_info, self.rec, self.length) = parse_gff(gff3)
        self.blast = parse_xml(blastp, thresh)

    def create_clusters(self):
        """ Finds 2 or more genes with matching hits """
        clusters = {}
        for gene in self.blast:
            for hit in gene:
                if " " in hit["gi_nos"]:
                    hit["gi_nos"] = hit["gi_nos"][0 : hit["gi_nos"].index(" ")]

                nameCheck = hit["gi_nos"]
                if nameCheck == "":
                    continue
                name = hashlib.md5((nameCheck).encode()).hexdigest()

                if name in clusters:
                    if hit not in clusters[name]:
                        clusters[name].append(hit)
                else:
                    clusters[name] = [hit]
        log.debug("create_clusters %s -> %s", len(self.blast), len(clusters))
        self.clusters = filter_lone_clusters(clusters)

    def check_strand(self):
        """ filters clusters for genes on the same strand """
        filtered_clusters = {}
        for key in self.clusters:
            pos_strand = []
            neg_strand = []
            for gene in self.clusters[key]:
                if self.gff_info[gene["name"]]["strand"] == 1:
                    pos_strand.append(gene)
                else:
                    neg_strand.append(gene)
            if len(pos_strand) == 0 or len(neg_strand) == 0:
                filtered_clusters[key] = self.clusters[key]
            else:
                if len(pos_strand) > 1:
                    filtered_clusters[key + "_+1"] = pos_strand
                if len(neg_strand) > 1:
                    filtered_clusters[key + "_-1"] = neg_strand

        return filtered_clusters

    def check_gene_gap(self, maximum=10000):
        filtered_clusters = {}
        for key in self.clusters:
            hits_lists = []
            gene_added = False
            for gene in self.clusters[key]:
                for hits in hits_lists:
                    for hit in hits:
                        lastStart = max(
                            self.gff_info[gene["name"]]["start"],
                            self.gff_info[hit["name"]]["start"],
                        )
                        lastEnd = max(
                            self.gff_info[gene["name"]]["end"],
                            self.gff_info[hit["name"]]["end"],
                        )
                        firstEnd = min(
                            self.gff_info[gene["name"]]["end"],
                            self.gff_info[hit["name"]]["end"],
                        )
                        firstStart = min(
                            self.gff_info[gene["name"]]["start"],
                            self.gff_info[hit["name"]]["start"],
                        )
                        if (
                            lastStart - firstEnd <= maximum
                            or self.length - lastEnd + firstStart <= maximum
                        ):
                            hits.append(gene)
                            gene_added = True
                            break
                if not gene_added:
                    hits_lists.append([gene])

            for i, hits in enumerate(hits_lists):
                if len(hits) >= 2:
                    filtered_clusters[key + "_" + str(i)] = hits
        # for i in filtered_clusters:
        #   print(i)
        #  print(filtered_clusters[i])
        log.debug("check_gene_gap %s -> %s", len(self.clusters), len(filtered_clusters))

        return remove_duplicates(
            filtered_clusters
        )  # call remove_duplicates somewhere else?

    # maybe figure out how to merge with check_gene_gap?
    # def check_seq_gap():

    # also need a check for gap in sequence coverage?
    def check_seq_overlap(self, minimum=-1):
        filtered_clusters = {}
        for key in self.clusters:
            add_cluster = True
            sbjct_ranges = []
            query_ranges = []
            for gene in self.clusters[key]:
                sbjct_ranges.append(gene["sbjct_range"])
                query_ranges.append(gene["query_range"])

            combinations = list(itertools.combinations(sbjct_ranges, 2))

            for pair in combinations:
                overlap = len(
                    set(range(pair[0][0], pair[0][1]))
                    & set(range(pair[1][0], pair[1][1]))
                )
                minPair = pair[0]
                maxPair = pair[1]

                if minPair[0] > maxPair[0]:
                    minPair = pair[1]
                    maxPair = pair[0]
                elif minPair[0] == maxPair[0] and minPair[1] > maxPair[1]:
                    minPair = pair[1]
                    maxPair = pair[0]
                if overlap > 0:
                    dist1 = maxPair[0] - minPair[0]
                else:
                    dist1 = abs(maxPair[0] - minPair[1])

                if minimum < 0:
                    if overlap > (minimum * -1):
                        # print("Rejcting: Neg min but too much overlap: " + str(pair))
                        add_cluster = False
                elif minimum == 0:
                    if overlap > 0:
                        # print("Rejcting: 0 min and overlap: " + str(pair))
                        add_cluster = False
                elif overlap > 0:
                    # print("Rejcting: Pos min and overlap: " + str(pair))
                    add_cluster = False

                if (dist1 < minimum) and (minimum >= 0):
                    # print("Rejcting: Dist failure: " + str(pair) + " D1: " + dist1)
                    add_cluster = False
                # if add_cluster:
                # print("Accepted: " + str(pair) + " D1: " + str(dist1) + " Ov: " + str(overlap))
            if add_cluster:

                filtered_clusters[key] = self.clusters[key]

        log.debug(
            "check_seq_overlap %s -> %s", len(self.clusters), len(filtered_clusters)
        )
        # print(self.clusters)
        return filtered_clusters

    def cluster_report(self):
        condensed_report = {}
        for key in self.clusters:
            for gene in self.clusters[key]:
                if gene["name"] in condensed_report:
                    condensed_report[gene["name"]].append(gene["sbjct_range"])
                else:
                    condensed_report[gene["name"]] = [gene["sbjct_range"]]
        return condensed_report

    def cluster_report_2(self):
        condensed_report = {}
        for key in self.clusters:
            gene_names = []
            for gene in self.clusters[key]:
                gene_names.append((gene["name"]).strip("CPT_phageK_"))
            if ", ".join(gene_names) in condensed_report:
                condensed_report[", ".join(gene_names)] += 1
            else:
                condensed_report[", ".join(gene_names)] = 1
        return condensed_report

    def cluster_report_3(self):
        condensed_report = {}
        for key in self.clusters:
            gene_names = []
            gi_nos = []
            for i, gene in enumerate(self.clusters[key]):
                if i == 0:
                    gi_nos = gene["gi_nos"]
                gene_names.append((gene["name"]).strip(".p01").strip("CPT_phageK_gp"))
            if ", ".join(gene_names) in condensed_report:
                condensed_report[", ".join(gene_names)].append(gi_nos)
            else:
                condensed_report[", ".join(gene_names)] = [gi_nos]
        return condensed_report

    def output_gff3(self, clusters):
        rec = copy.deepcopy(self.rec)
        rec.features = []
        for cluster_idx, cluster_id in enumerate(clusters):
            # Get the list of genes in this cluster
            associated_genes = set([x["name"] for x in clusters[cluster_id]])
            # print(associated_genes)
            # Get the gene locations
            assoc_gene_info = {x: self.gff_info[x]["loc"] for x in associated_genes}
            # Now we construct a gene from the children as a "standard gene model" gene.
            # Get the minimum and maximum locations covered by all of the children genes
            gene_min = min([min(x[1].start, x[1].end) for x in assoc_gene_info.items()])
            gene_max = max([max(x[1].start, x[1].end) for x in assoc_gene_info.items()])

            evidence_notes = []
            for cluster_elem in clusters[cluster_id]:
                note = "{name} had {ident}% identity to NCBI Protein ID {pretty_gi}".format(
                    pretty_gi=(cluster_elem["gi_nos"]),
                    ident=int(
                        100
                        * float(cluster_elem["identity"] - 1.00)
                        / abs(
                            cluster_elem["query_range"][1]
                            - cluster_elem["query_range"][0]
                        )
                    ),
                    **cluster_elem
                )
                evidence_notes.append(note)
            if gene_max - gene_min > 0.8 * float(self.length):
                evidence_notes.append(
                    "Intron is over 80% of the total length of the genome, possible wraparound scenario"
                )
            # With that we can create the top level gene
            gene = gffSeqFeature(
                location=FeatureLocation(gene_min, gene_max),
                type="gene",
                id=cluster_id,
                qualifiers={
                    "ID": ["gp_%s" % cluster_idx],
                    "Percent_Identities": evidence_notes,
                    "Note": clusters[cluster_id][0]["match_id"],
                },
            )

            # Below that we have an mRNA
            mRNA = gffSeqFeature(
                location=FeatureLocation(gene_min, gene_max),
                type="mRNA",
                id=cluster_id + ".mRNA",
                qualifiers={"ID": ["gp_%s.mRNA" % cluster_idx], "note": evidence_notes},
            )

            # Now come the CDSs.
            cdss = []
            # We sort them just for kicks
            for idx, gene_name in enumerate(
                sorted(associated_genes, key=lambda x: int(self.gff_info[x]["start"]))
            ):
                # Copy the CDS so we don't muck up a good one
                cds = copy.copy(self.gff_info[gene_name]["feat"])
                # Get the associated cluster element (used in the Notes above)
                cluster_elem = [
                    x for x in clusters[cluster_id] if x["name"] == gene_name
                ][0]

                # Calculate %identity which we'll use to score
                score = int(
                    1000
                    * float(cluster_elem["identity"])
                    / abs(
                        cluster_elem["query_range"][1] - cluster_elem["query_range"][0]
                    )
                )

                tempLoc = FeatureLocation(
                    cds.location.start + (3 * (cluster_elem["query_range"][0] - 1)),
                    cds.location.start + (3 * (cluster_elem["query_range"][1])),
                    cds.location.strand,
                )
                cds.location = tempLoc
                # Set the qualifiers appropriately
                cds.qualifiers = {
                    "ID": ["gp_%s.CDS.%s" % (cluster_idx, idx)],
                    "score": score,
                    "Name": self.gff_info[gene_name]["name"],
                    "evalue": cluster_elem["evalue"],
                    "Identity": cluster_elem["identity_percent"] * 100,
                    #'|'.join(cluster_elem['gi_nos']) + "| title goes here."
                }
                # cds.location.start = cds.location.start +
                cdss.append(cds)

            # And we attach the things properly.
            mRNA.sub_features = cdss
            mRNA.location = FeatureLocation(mRNA.location.start, mRNA.location.end, cds.location.strand)
            gene.sub_features = [mRNA]
            gene.location = FeatureLocation(gene.location.start, gene.location.end, cds.location.strand)
            
            # And append to our record
            rec.features.append(gene)
        return rec

    def output_xml(self, clusters):
        threeLevel = {}
        # print((clusters.viewkeys()))
        # print(type(enumerate(clusters)))
        # print(type(clusters))
        for cluster_idx, cluster_id in enumerate(clusters):
            # print(type(cluster_id))
            # print(type(cluster_idx))
            # print(type(clusters[cluster_id][0]['hit_num']))
            if not (clusters[cluster_id][0]["iter_num"] in threeLevel.keys):
                threeLevel[clusters[cluster_id][0]["iter_num"]] = {}
        # for cluster_idx, cluster_id in enumerate(clusters):
        #    print(type(clusters[cluster_id]))
        #    b = {clusters[cluster_id][i]: clusters[cluster_id][i+1] for i in range(0, len(clusters[cluster_id]), 2)}
        #    print(type(b))#['name']))
        # for hspList in clusters:
        # for x, idx in (enumerate(clusters)):#for hsp in hspList:
        #    print("In X")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Intron detection")
    parser.add_argument("gff3", type=argparse.FileType("r"), help="GFF3 gene calls")
    parser.add_argument(
        "blastp", type=argparse.FileType("r"), help="blast XML protein results"
    )
    parser.add_argument(
        "--minimum",
        help="Gap minimum (Default -1, set to a negative number to allow overlap)",
        default=-1,
        type=int,
    )
    parser.add_argument(
        "--maximum",
        help="Gap maximum in genome (Default 10000)",
        default=10000,
        type=int,
    )
    parser.add_argument(
        "--idThresh", help="ID Percent Threshold", default=0.4, type=float
    )

    args = parser.parse_args()

    threshCap = args.idThresh
    if threshCap > 1.00:
        threshCap = 1.00
    if threshCap < 0:
        threshCap = 0

    # create new IntronFinder object based on user input
    ifinder = IntronFinder(args.gff3, args.blastp, threshCap)
    ifinder.create_clusters()
    ifinder.clusters = ifinder.check_strand()
    ifinder.clusters = ifinder.check_gene_gap(maximum=args.maximum)
    ifinder.clusters = ifinder.check_seq_overlap(minimum=args.minimum)
    # ifinder.output_xml(ifinder.clusters)
    # for x, idx in (enumerate(ifinder.clusters)):
    # print(ifinder.blast)

    condensed_report = ifinder.cluster_report()
    rec = ifinder.output_gff3(ifinder.clusters)
    gffWrite([rec], sys.stdout)

    # import pprint; pprint.pprint(ifinder.clusters)