Mercurial > repos > cpt > cpt_lipop_conversion
view cpt_lipop_conv/gff3.py @ 0:adde21b6bdb3 draft
Uploaded
author | cpt |
---|---|
date | Fri, 13 May 2022 05:18:31 +0000 |
parents | |
children |
line wrap: on
line source
import copy import logging log = logging.getLogger() log.setLevel(logging.WARN) def feature_lambda( feature_list, test, test_kwargs, subfeatures=True, parent=None, invert=False, recurse=True, ): """Recursively search through features, testing each with a test function, yielding matches. GFF3 is a hierachical data structure, so we need to be able to recursively search through features. E.g. if you're looking for a feature with ID='bob.42', you can't just do a simple list comprehension with a test case. You don't know how deeply burried bob.42 will be in the feature tree. This is where feature_lambda steps in. :type feature_list: list :param feature_list: an iterable of features :type test: function reference :param test: a closure with the method signature (feature, **kwargs) where the kwargs are those passed in the next argument. This function should return True or False, True if the feature is to be yielded as part of the main feature_lambda function, or False if it is to be ignored. This function CAN mutate the features passed to it (think "apply"). :type test_kwargs: dictionary :param test_kwargs: kwargs to pass to your closure when it is called. :type subfeatures: boolean :param subfeatures: when a feature is matched, should just that feature be yielded to the caller, or should the entire sub_feature tree for that feature be included? subfeatures=True is useful in cases such as searching for a gene feature, and wanting to know what RBS/Shine_Dalgarno_sequences are in the sub_feature tree (which can be accomplished with two feature_lambda calls). subfeatures=False is useful in cases when you want to process (and possibly return) the entire feature tree, such as applying a qualifier to every single feature. :type invert: boolean :param invert: Negate/invert the result of the filter. :rtype: yielded list :return: Yields a list of matching features. """ # Either the top level set of [features] or the subfeature attribute for feature in feature_list: feature._parent = parent if not parent: # Set to self so we cannot go above root. feature._parent = feature test_result = test(feature, **test_kwargs) # if (not invert and test_result) or (invert and not test_result): if invert ^ test_result: if not subfeatures: feature_copy = copy.deepcopy(feature) feature_copy.sub_features = list() yield feature_copy else: yield feature if recurse and hasattr(feature, "sub_features"): for x in feature_lambda( feature.sub_features, test, test_kwargs, subfeatures=subfeatures, parent=feature, invert=invert, recurse=recurse, ): yield x def fetchParent(feature): if not hasattr(feature, "_parent") or feature._parent is None: return feature else: return fetchParent(feature._parent) def feature_test_true(feature, **kwargs): return True def feature_test_type(feature, **kwargs): if "type" in kwargs: return str(feature.type).upper() == str(kwargs["type"]).upper() elif "types" in kwargs: for x in kwargs["types"]: if str(feature.type).upper() == str(x).upper(): return True return False raise Exception("Incorrect feature_test_type call, need type or types") def feature_test_qual_value(feature, **kwargs): """Test qualifier values. For every feature, check that at least one value in feature.quailfiers(kwargs['qualifier']) is in kwargs['attribute_list'] """ if isinstance(kwargs["qualifier"], list): for qualifier in kwargs["qualifier"]: for attribute_value in feature.qualifiers.get(qualifier, []): if attribute_value in kwargs["attribute_list"]: return True else: for attribute_value in feature.qualifiers.get(kwargs["qualifier"], []): if attribute_value in kwargs["attribute_list"]: return True return False def feature_test_location(feature, **kwargs): if "strand" in kwargs: if feature.location.strand != kwargs["strand"]: return False return feature.location.start <= kwargs["loc"] <= feature.location.end def feature_test_quals(feature, **kwargs): """ Example:: a = Feature(qualifiers={'Note': ['Some notes', 'Aasdf']}) # Check if a contains a Note feature_test_quals(a, {'Note': None}) # Returns True feature_test_quals(a, {'Product': None}) # Returns False # Check if a contains a note with specific value feature_test_quals(a, {'Note': ['ome']}) # Returns True # Check if a contains a note with specific value feature_test_quals(a, {'Note': ['other']}) # Returns False """ for key in kwargs: if key not in feature.qualifiers: return False # Key is present, no value specified if kwargs[key] is None: return True # Otherwise there is a key value we're looking for. # so we make a list of matches matches = [] # And check all of the feature qualifier valuse for value in feature.qualifiers[key]: # For that kwargs[key] value for x in kwargs[key]: matches.append(x in value) # If none matched, then we return false. if not any(matches): return False return True def feature_test_contains(feature, **kwargs): if "index" in kwargs: return feature.location.start < kwargs["index"] < feature.location.end elif "range" in kwargs: return ( feature.location.start < kwargs["range"]["start"] < feature.location.end and feature.location.start < kwargs["range"]["end"] < feature.location.end ) else: raise RuntimeError("Must use index or range keyword") def get_id(feature=None, parent_prefix=None): result = "" if parent_prefix is not None: result += parent_prefix + "|" if "locus_tag" in feature.qualifiers: result += feature.qualifiers["locus_tag"][0] elif "gene" in feature.qualifiers: result += feature.qualifiers["gene"][0] elif "Gene" in feature.qualifiers: result += feature.qualifiers["Gene"][0] elif "product" in feature.qualifiers: result += feature.qualifiers["product"][0] elif "Product" in feature.qualifiers: result += feature.qualifiers["Product"][0] elif "Name" in feature.qualifiers: result += feature.qualifiers["Name"][0] else: return feature.id # Leaving in case bad things happen. # result += '%s_%s_%s_%s' % ( # feature.id, # feature.location.start, # feature.location.end, # feature.location.strand # ) return result def get_gff3_id(gene): return gene.qualifiers.get("Name", [gene.id])[0] def ensure_location_in_bounds(start=0, end=0, parent_length=0): # This prevents frameshift errors while start < 0: start += 3 while end < 0: end += 3 while start > parent_length: start -= 3 while end > parent_length: end -= 3 return (start, end) def coding_genes(feature_list): for x in genes(feature_list): if ( len( list( feature_lambda( x.sub_features, feature_test_type, {"type": "CDS"}, subfeatures=False, ) ) ) > 0 ): yield x def genes(feature_list, feature_type="gene", sort=False): """ Simple filter to extract gene features from the feature set. """ if not sort: for x in feature_lambda( feature_list, feature_test_type, {"type": feature_type}, subfeatures=True ): yield x else: data = list(genes(feature_list, feature_type=feature_type, sort=False)) data = sorted(data, key=lambda feature: feature.location.start) for x in data: yield x def wa_unified_product_name(feature): """ Try and figure out a name. We gave conflicting instructions, so this isn't as trivial as it should be. Sometimes it will be in 'product' or 'Product', othertimes in 'Name' """ # Manually applied tags. protein_product = feature.qualifiers.get( "product", feature.qualifiers.get("Product", [None]) )[0] # If neither of those are available ... if protein_product is None: # And there's a name... if "Name" in feature.qualifiers: if not is_uuid(feature.qualifiers["Name"][0]): protein_product = feature.qualifiers["Name"][0] return protein_product def is_uuid(name): return name.count("-") == 4 and len(name) == 36 def get_rbs_from(gene): # Normal RBS annotation types rbs_rbs = list( feature_lambda( gene.sub_features, feature_test_type, {"type": "RBS"}, subfeatures=False ) ) rbs_sds = list( feature_lambda( gene.sub_features, feature_test_type, {"type": "Shine_Dalgarno_sequence"}, subfeatures=False, ) ) # Fraking apollo apollo_exons = list( feature_lambda( gene.sub_features, feature_test_type, {"type": "exon"}, subfeatures=False ) ) apollo_exons = [x for x in apollo_exons if len(x) < 10] # These are more NCBI's style regulatory_elements = list( feature_lambda( gene.sub_features, feature_test_type, {"type": "regulatory"}, subfeatures=False, ) ) rbs_regulatory = list( feature_lambda( regulatory_elements, feature_test_quals, {"regulatory_class": ["ribosome_binding_site"]}, subfeatures=False, ) ) # Here's hoping you find just one ;) return rbs_rbs + rbs_sds + rbs_regulatory + apollo_exons def nice_name(record): """ get the real name rather than NCBI IDs and so on. If fails, will return record.id """ name = record.id likely_parental_contig = list(genes(record.features, feature_type="contig")) if len(likely_parental_contig) == 1: name = likely_parental_contig[0].qualifiers.get("organism", [name])[0] return name def fsort(it): for i in sorted(it, key=lambda x: int(x.location.start)): yield i