Mercurial > repos > cpt > cpt_phageqc_annotations
comparison cpt_phageqc_annotation/shinefind.py @ 0:c3140b08d703 draft default tip
Uploaded
author | cpt |
---|---|
date | Fri, 17 Jun 2022 13:00:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c3140b08d703 |
---|---|
1 #!/usr/bin/env python | |
2 import re | |
3 import sys | |
4 import argparse | |
5 import logging | |
6 from CPT_GFFParser import gffParse, gffWrite, gffSeqFeature | |
7 from Bio import SeqIO | |
8 from Bio.SeqRecord import SeqRecord | |
9 from Bio.SeqFeature import FeatureLocation | |
10 from gff3 import ( | |
11 feature_lambda, | |
12 feature_test_type, | |
13 feature_test_true, | |
14 feature_test_quals, | |
15 get_id, | |
16 ensure_location_in_bounds, | |
17 ) | |
18 | |
19 logging.basicConfig(level=logging.INFO) | |
20 log = logging.getLogger() | |
21 | |
22 | |
23 class NaiveSDCaller(object): | |
24 | |
25 # TODO May make switch for different sequence sets | |
26 SD_SEQUENCES = ( | |
27 "AGGAGGT", | |
28 "GGAGGT", | |
29 "AGGAGG", | |
30 "GGGGGG", | |
31 "AGGAG", | |
32 "GAGGT", | |
33 "GGAGG", | |
34 "GGGGG", | |
35 "AGGT", | |
36 "GGGT", | |
37 "GAGG", | |
38 "GGGG", | |
39 "AGGA", | |
40 "GGAG", | |
41 "GGA", | |
42 "GAG", | |
43 "AGG", | |
44 "GGT", | |
45 "GGG", | |
46 ) | |
47 | |
48 def __init__(self): | |
49 self.sd_reg = [re.compile(x, re.IGNORECASE) for x in self.SD_SEQUENCES] | |
50 | |
51 def list_sds(self, sequence, sd_min=3, sd_max=17): | |
52 hits = [] | |
53 for regex in self.sd_reg: | |
54 for match in regex.finditer(sequence): | |
55 spacing = len(sequence) - len(match.group()) - match.start() | |
56 if sd_max >= spacing+sd_min and spacing+sd_min >= sd_min: | |
57 #if the spacing is within gap limits, add | |
58 #(search space is [sd_max+7 .. sd_min] so actual gap is spacing+sd_min) | |
59 #print('min %d max %d - adding SD with gap %d' % (sd_min, sd_max, spacing+sd_min)) | |
60 hits.append( | |
61 { | |
62 "spacing": spacing, | |
63 "hit": match.group(), | |
64 "start": match.start(), | |
65 "end": match.end(), | |
66 "len": len(match.group()), | |
67 } | |
68 ) | |
69 hits = sorted(hits, key= lambda x: (-x['len'],x['spacing'])) | |
70 return hits | |
71 | |
72 @classmethod | |
73 def highlight_sd(cls, sequence, start, end): | |
74 return " ".join( | |
75 [ | |
76 sequence[0:start].lower(), | |
77 sequence[start:end].upper(), | |
78 sequence[end:].lower(), | |
79 ] | |
80 ) | |
81 | |
82 @classmethod | |
83 def to_features(cls, hits, strand, parent_start, parent_end, feature_id=None, sd_min=3, sd_max=17): | |
84 results = [] | |
85 for idx, hit in enumerate(hits): | |
86 # gene complement(124..486) | |
87 # -1 491 501 0 5 5 | |
88 # -1 491 501 0 4 5 | |
89 # -1 491 501 1 4 5 | |
90 # -1 491 501 2 3 5 | |
91 # -1 491 501 1 3 5 | |
92 # -1 491 501 0 3 5 | |
93 | |
94 qualifiers = { | |
95 "source": "CPT_ShineFind", | |
96 "ID": "%s.rbs-%s" % (feature_id, idx), | |
97 } | |
98 | |
99 if strand > 0: | |
100 start = parent_end - hit["spacing"] - hit["len"] | |
101 end = parent_end - hit["spacing"] | |
102 else: | |
103 start = parent_start + hit["spacing"] | |
104 end = parent_start + hit["spacing"] + hit["len"] | |
105 # check that the END of the SD sequence is within the given min/max of parent start/end | |
106 | |
107 # gap is either the sd_start-cds_end (neg strand) or the sd_end-cds_start (pos strand) | |
108 # minimum absolute value of these two will be the proper gap regardless of strand | |
109 tmp = gffSeqFeature( | |
110 FeatureLocation(min(start, end), max(start, end), strand=strand), | |
111 #FeatureLocation(min(start, end), max(start, end), strand=strand), | |
112 type="Shine_Dalgarno_sequence", | |
113 qualifiers=qualifiers, | |
114 ) | |
115 results.append(tmp) | |
116 return results | |
117 | |
118 def testFeatureUpstream(self, feature, record, sd_min=3, sd_max=17): | |
119 # Strand information necessary to getting correct upstream sequence | |
120 strand = feature.location.strand | |
121 | |
122 # n_bases_upstream (plus/minus 7 upstream to make the min/max define the possible gap position) | |
123 if strand > 0: | |
124 start = feature.location.start - sd_max - 7 | |
125 end = feature.location.start - sd_min | |
126 else: | |
127 start = feature.location.end + sd_min | |
128 end = feature.location.end + sd_max + 7 | |
129 | |
130 (start, end) = ensure_location_in_bounds( | |
131 start=start, end=end, parent_length=len(record) | |
132 ) | |
133 | |
134 # Create our temp feature used to obtain correct portion of | |
135 # genome | |
136 tmp = gffSeqFeature(FeatureLocation(min(start, end), max(start, end), strand=strand), type="domain") | |
137 seq = str(tmp.extract(record.seq)) | |
138 return self.list_sds(seq, sd_min, sd_max), start, end, seq | |
139 | |
140 def hasSd(self, feature, record, sd_min=3, sd_max=17): | |
141 sds, start, end, seq = self.testFeatureUpstream( | |
142 feature, record, sd_min=sd_min, sd_max=sd_max | |
143 ) | |
144 return len(sds) > 0 | |
145 | |
146 | |
147 # Cycle through subfeatures, set feature's location to be equal | |
148 # to the smallest start and largest end. | |
149 # Remove pending bugfix for feature display in Apollo | |
150 def fminmax(feature): | |
151 fmin = None | |
152 fmax = None | |
153 for sf in feature_lambda([feature], feature_test_true, {}, subfeatures=True): | |
154 if fmin is None: | |
155 fmin = sf.location.start | |
156 fmax = sf.location.end | |
157 if sf.location.start < fmin: | |
158 fmin = sf.location.start | |
159 if sf.location.end > fmax: | |
160 fmax = sf.location.end | |
161 return fmin, fmax | |
162 | |
163 | |
164 def fix_gene_boundaries(feature): | |
165 # There is a bug in Apollo whereby we have created gene | |
166 # features which are larger than expected, but we cannot see this. | |
167 # We only see a perfect sized gene + SD together. | |
168 # | |
169 # So, we clamp the location of the gene feature to the | |
170 # contained mRNAs. Will remove pending Apollo upgrade. | |
171 fmin, fmax = fminmax(feature) | |
172 if feature.location.strand > 0: | |
173 feature.location = FeatureLocation(fmin, fmax, strand=1) | |
174 else: | |
175 feature.location = FeatureLocation(fmin, fmax, strand=-1) | |
176 return feature | |
177 | |
178 def shinefind( | |
179 fasta, | |
180 gff3, | |
181 gff3_output=None, | |
182 table_output=None, | |
183 lookahead_min=3, | |
184 lookahead_max=17, | |
185 top_only=False, | |
186 add=False, | |
187 ): | |
188 table_output.write( | |
189 "\t".join( | |
190 [ | |
191 "ID", | |
192 "Name", | |
193 "Terminus", | |
194 "Terminus", | |
195 "Strand", | |
196 "Upstream Sequence", | |
197 "SD", | |
198 "Spacing", | |
199 ] | |
200 ) | |
201 + "\n" | |
202 ) | |
203 | |
204 sd_finder = NaiveSDCaller() | |
205 # Load up sequence(s) for GFF3 data | |
206 seq_dict = SeqIO.to_dict(SeqIO.parse(fasta, "fasta")) | |
207 # Parse GFF3 records | |
208 for record in gffParse(gff3, base_dict=seq_dict): | |
209 # Shinefind's gff3_output. | |
210 gff3_output_record = SeqRecord(record.seq, record.id) | |
211 # Filter out just coding sequences | |
212 ignored_features = [] | |
213 for x in record.features: | |
214 # If feature X does NOT contain a CDS, add to ignored_features | |
215 # list. This means if we have a top level gene feature with or | |
216 # without a CDS subfeature, we're catch it appropriately here. | |
217 if ( | |
218 len( | |
219 list( | |
220 feature_lambda( | |
221 [x], feature_test_type, {"type": "CDS"}, subfeatures=True | |
222 ) | |
223 ) | |
224 ) | |
225 == 0 | |
226 ): | |
227 ignored_features.append(x) | |
228 | |
229 # Loop over all gene features | |
230 for gene in feature_lambda( | |
231 record.features, feature_test_type, {"type": "gene"}, subfeatures=True | |
232 ): | |
233 | |
234 # Get the CDS from this gene. | |
235 feature = sorted( | |
236 list( | |
237 feature_lambda( | |
238 gene.sub_features, | |
239 feature_test_type, | |
240 {"type": "CDS"}, | |
241 subfeatures=True, | |
242 ) | |
243 ), | |
244 key=lambda x: x.location.start, | |
245 ) | |
246 # If no CDSs are in this gene feature, then quit | |
247 if len(feature) == 0: | |
248 # We've already caught these above in our ignored_features | |
249 # list, so we skip out on the rest of this for loop | |
250 continue | |
251 else: | |
252 # Otherwise pull the first on the strand. | |
253 feature = feature[0] | |
254 | |
255 # Three different ways RBSs can be stored that we expect. | |
256 rbs_rbs = list( | |
257 feature_lambda( | |
258 gene.sub_features, | |
259 feature_test_type, | |
260 {"type": "RBS"}, | |
261 subfeatures=False, | |
262 ) | |
263 ) | |
264 rbs_sds = list( | |
265 feature_lambda( | |
266 gene.sub_features, | |
267 feature_test_type, | |
268 {"type": "Shine_Dalgarno_sequence"}, | |
269 subfeatures=False, | |
270 ) | |
271 ) | |
272 regulatory_elements = list( | |
273 feature_lambda( | |
274 gene.sub_features, | |
275 feature_test_type, | |
276 {"type": "regulatory"}, | |
277 subfeatures=False, | |
278 ) | |
279 ) | |
280 rbs_regulatory = list( | |
281 feature_lambda( | |
282 regulatory_elements, | |
283 feature_test_quals, | |
284 {"regulatory_class": ["ribosome_binding_site"]}, | |
285 subfeatures=False, | |
286 ) | |
287 ) | |
288 rbss = rbs_rbs + rbs_sds + rbs_regulatory | |
289 | |
290 # If someone has already annotated an RBS, we move to the next gene | |
291 if len(rbss) > 0: | |
292 log.debug("Has %s RBSs", len(rbss)) | |
293 ignored_features.append(gene) | |
294 continue | |
295 | |
296 sds, start, end, seq = sd_finder.testFeatureUpstream( | |
297 feature, record, sd_min=lookahead_min, sd_max=lookahead_max | |
298 ) | |
299 | |
300 feature_id = get_id(feature) | |
301 sd_features = sd_finder.to_features( | |
302 sds, feature.location.strand, start, end, feature_id=feature.id | |
303 ) | |
304 | |
305 human_strand = "+" if feature.location.strand == 1 else "-" | |
306 | |
307 # http://book.pythontips.com/en/latest/for_-_else.html | |
308 log.debug("Found %s SDs", len(sds)) | |
309 for (sd, sd_feature) in zip(sds, sd_features): | |
310 # If we only want the top feature, after the bulk of the | |
311 # forloop executes once, we append the top feature, and fake a | |
312 # break, because an actual break triggers the else: block | |
313 table_output.write( | |
314 "\t".join( | |
315 map( | |
316 str, | |
317 [ | |
318 feature.id, | |
319 feature_id, | |
320 feature.location.start, | |
321 feature.location.end, | |
322 human_strand, | |
323 sd_finder.highlight_sd(seq, sd["start"], sd["end"]), | |
324 sd["hit"], | |
325 int(sd["spacing"]) + lookahead_min, | |
326 ], | |
327 ) | |
328 ) | |
329 + "\n" | |
330 ) | |
331 | |
332 if add: | |
333 # Append the top RBS to the gene feature | |
334 gene.sub_features.append(sd_feature) | |
335 # Pick out start/end locations for all sub_features | |
336 locations = [x.location.start for x in gene.sub_features] + [ | |
337 x.location.end for x in gene.sub_features | |
338 ] | |
339 # Update gene's start/end to be inclusive | |
340 gene.location._start = min(locations) | |
341 gene.location._end = max(locations) | |
342 # Also register the feature with the separate GFF3 output | |
343 sd_feature = fix_gene_boundaries(sd_feature) | |
344 gff3_output_record.features.append(sd_feature) | |
345 | |
346 if top_only or sd == (sds[-1]): | |
347 break | |
348 else: | |
349 table_output.write( | |
350 "\t".join( | |
351 map( | |
352 str, | |
353 [ | |
354 feature.id, | |
355 feature_id, | |
356 feature.location.start, | |
357 feature.location.end, | |
358 human_strand, | |
359 seq, | |
360 None, | |
361 -1, | |
362 ], | |
363 ) | |
364 ) | |
365 + "\n" | |
366 ) | |
367 | |
368 record.annotations = {} | |
369 gffWrite([record], sys.stdout) | |
370 | |
371 gff3_output_record.features = sorted( | |
372 gff3_output_record.features, key=lambda x: x.location.start | |
373 ) | |
374 gff3_output_record.annotations = {} | |
375 gffWrite([gff3_output_record], gff3_output) | |
376 | |
377 | |
378 if __name__ == "__main__": | |
379 parser = argparse.ArgumentParser(description="Identify shine-dalgarno sequences") | |
380 parser.add_argument("fasta", type=argparse.FileType("r"), help="Fasta Genome") | |
381 parser.add_argument("gff3", type=argparse.FileType("r"), help="GFF3 annotations") | |
382 | |
383 parser.add_argument( | |
384 "--gff3_output", | |
385 type=argparse.FileType("w"), | |
386 help="GFF3 Output", | |
387 default="shinefind.gff3", | |
388 ) | |
389 parser.add_argument( | |
390 "--table_output", | |
391 type=argparse.FileType("w"), | |
392 help="Tabular Output", | |
393 default="shinefind.tbl", | |
394 ) | |
395 | |
396 parser.add_argument( | |
397 "--lookahead_min", | |
398 nargs="?", | |
399 type=int, | |
400 help="Number of bases upstream of CDSs to end search", | |
401 default=3, | |
402 ) | |
403 parser.add_argument( | |
404 "--lookahead_max", | |
405 nargs="?", | |
406 type=int, | |
407 help="Number of bases upstream of CDSs to begin search", | |
408 default=17, | |
409 ) | |
410 | |
411 parser.add_argument("--top_only", action="store_true", help="Only report best hits") | |
412 parser.add_argument( | |
413 "--add", | |
414 action="store_true", | |
415 help='Function in "addition" mode whereby the ' | |
416 + "RBSs are added directly to the gene model.", | |
417 ) | |
418 | |
419 args = parser.parse_args() | |
420 shinefind(**vars(args)) |