Mercurial > repos > crs4 > exomedepth
view exomedepth.R @ 3:88b89f435f6a draft
Uploaded
author | crs4 |
---|---|
date | Tue, 05 Jun 2018 18:58:08 -0400 |
parents | 7697ae024df6 |
children | 9ccde1867fbb |
line wrap: on
line source
# Load ExomeDepth library (without warnings) suppressMessages(library(ExomeDepth)) # Import parameters from xml wrapper (args_file) args <- commandArgs(trailingOnly=TRUE) param <- read.table(args[1],sep="=", as.is=TRUE) # Set common parameters target <- param[match("target",param[,1]),2] trans_prob <- as.numeric(param[match("trans_prob",param[,1]),2]) output <- param[match("output",param[,1]),2] test_vs_ref <- as.logical(param[match("test_vs_ref",param[,1]),2]) # Create symbolic links for multiple bam and bai bam <- param[param[,1]=="bam",2] bam_bai <- param[param[,1]=="bam_bai",2] bam_label <- param[param[,1]=="bam_label",2] bam_label <- gsub(" ", "_", bam_label) for(i in 1:length(bam)){ stopifnot(file.symlink(bam[i], paste(bam_label[i], "bam", sep="."))) stopifnot(file.symlink(bam_bai[i], paste(bam_label[i], "bam.bai", sep="."))) } # Generate read count data BAMFiles <- paste(bam_label, "bam", sep=".") sink("/dev/null") ExomeCount <- suppressMessages(getBamCounts(bed.file=target, bam.files = BAMFiles)) sink() # Convert counts in a data frame ExomeCount.dafr <- as(ExomeCount[, colnames(ExomeCount)], 'data.frame') # Prepare the main matrix of read count data ExomeCount.mat <- as.matrix(ExomeCount.dafr[, grep(names(ExomeCount.dafr), pattern='.bam')]) # Remove .bam from sample name colnames(ExomeCount.mat) <- gsub(".bam", "", colnames(ExomeCount.mat)) # Set nsamples == 1 if mode is test vs reference, assuming test is sample 1 nsamples <- ifelse(test_vs_ref, 1, ncol(ExomeCount.mat)) # Loop over samples for (i in 1:nsamples){ # Create the aggregate reference set for this sample my.choice <- suppressWarnings(suppressMessages( select.reference.set(test.counts = ExomeCount.mat[,i], reference.counts = subset(ExomeCount.mat, select=-i), bin.length = (ExomeCount.dafr$end - ExomeCount.dafr$start)/1000, n.bins.reduced = 10000))) my.reference.selected <- apply(X = ExomeCount.mat[, my.choice$reference.choice, drop=FALSE], MAR = 1, FUN = sum) # Now create the ExomeDepth object for the CNVs call all.exons<-suppressWarnings(suppressMessages(new('ExomeDepth', test = ExomeCount.mat[,i], reference = my.reference.selected, formula = 'cbind(test,reference)~1'))) # Now call the CNVs result <- try(all.exons<-suppressMessages(CallCNVs(x=all.exons, transition.probability = trans_prob, chromosome = ExomeCount.dafr$space, start = ExomeCount.dafr$start, end = ExomeCount.dafr$end, name = ExomeCount.dafr$names)), silent=T) # Next if CNVs are not detected if (class(result)=="try-error"){ next } # Compute correlation between ref and test my.cor <- cor(all.exons@reference, all.exons@test) n.call <- nrow(all.exons@CNV.calls) # Write results my.results <- cbind(all.exons@CNV.calls[,c(7,5,6,3)], sample=colnames(ExomeCount.mat)[i], corr=my.cor, all.exons@CNV.calls[,c(4,9,12)]) # Re-order by chr and position chrOrder<-c(paste("chr",1:22,sep=""),"chrX","chrY","chrM") my.results[,1] <- factor(my.results[,1], levels=chrOrder) my.results <- my.results[order(my.results[,1], my.results[,2], my.results[,3]),] write.table(sep='\t', quote=FALSE, file = output, x = my.results, row.names = FALSE, col.names = FALSE, dec=".", append=TRUE) }