Mercurial > repos > cstrittmatter > ss2v110
comparison README.md @ 0:fc22ec8e924e draft
planemo upload commit 6b0a9d0f0ef4bdb0c2e2c54070b510ff28125f7a
author | cstrittmatter |
---|---|
date | Tue, 21 Apr 2020 12:45:34 -0400 |
parents | |
children | d0350fe29fdf |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:fc22ec8e924e |
---|---|
1 # SeqSero2 v1.1.0 | |
2 Salmonella serotype prediction from genome sequencing data. | |
3 | |
4 Online version: http://www.denglab.info/SeqSero2 | |
5 | |
6 # Introduction | |
7 SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies | |
8 | |
9 # Dependencies | |
10 SeqSero2 has three workflows: | |
11 | |
12 (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing). | |
13 | |
14 Allele micro-assembly workflow depends on: | |
15 | |
16 1. Python 3; | |
17 | |
18 2. Biopython 1.73; | |
19 | |
20 3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/); | |
21 | |
22 4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/); | |
23 | |
24 5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download); | |
25 | |
26 6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software); | |
27 | |
28 7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades); | |
29 | |
30 8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/); | |
31 | |
32 9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID). | |
33 | |
34 | |
35 (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants. | |
36 | |
37 Raw reads k-mer workflow (originally SeqSeroK) depends on: | |
38 | |
39 1. Python 3; | |
40 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files); | |
41 | |
42 | |
43 (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow | |
44 | |
45 # Installation | |
46 ### Conda | |
47 To install the latest SeqSero2 Conda package (recommended): | |
48 ``` | |
49 conda install -c bioconda seqsero2=1.1.0 | |
50 ``` | |
51 ### Git | |
52 To install the SeqSero2 git repository locally: | |
53 ``` | |
54 git clone https://github.com/denglab/SeqSero2.git | |
55 cd SeqSero2 | |
56 python3 -m pip install --user . | |
57 ``` | |
58 ### Other options | |
59 Third party SeqSero2 installations (may not be the latest version of SeqSero2): \ | |
60 https://github.com/B-UMMI/docker-images/tree/master/seqsero2 \ | |
61 https://github.com/denglab/SeqSero2/issues/13 | |
62 | |
63 | |
64 # Executing the code | |
65 Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions. | |
66 | |
67 Usage: SeqSero2_package.py | |
68 | |
69 -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a) | |
70 | |
71 -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq) | |
72 | |
73 -i <file> (/path/to/input/file) | |
74 | |
75 -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1) | |
76 | |
77 -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode) | |
78 | |
79 -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number) | |
80 | |
81 -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files) | |
82 | |
83 -n <string> (optional, to specify a sample name in the report output) | |
84 | |
85 -s <flag> (if '-s' was flagged, SeqSero2 will not output header in SeqSero_result.tsv) | |
86 | |
87 --check <flag> (use '--check' flag to check the required dependencies) | |
88 | |
89 -v, --version (show program's version number and exit) | |
90 | |
91 | |
92 # Examples | |
93 Allele mode: | |
94 | |
95 # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10") | |
96 SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz | |
97 | |
98 K-mer mode: | |
99 | |
100 # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2") | |
101 SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz | |
102 | |
103 # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k") | |
104 SeqSero2_package.py -m k -t 4 -i assembly.fasta | |
105 | |
106 # Output | |
107 Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'SeqSero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode). | |
108 | |
109 | |
110 # Citation | |
111 Zhang S, Den-Bakker HC, Li S, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X. | |
112 SeqSero2: rapid and improved Salmonella serotype determination using whole genome sequencing data. | |
113 **Appl Environ Microbiology. 2019 Sep; 85(23):e01746-19.** [PMID: 31540993](https://aem.asm.org/content/early/2019/09/17/AEM.01746-19.long) | |
114 | |
115 Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X. | |
116 Salmonella serotype determination utilizing high-throughput genome sequencing data. | |
117 **J Clin Microbiol. 2015 May;53(5):1685-92.** [PMID: 25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15) |