Mercurial > repos > cstrittmatter > ss2v110
view build/lib/README.md @ 12:08832c0d3cbd draft
planemo upload commit 70dc513aa7d7ac6785847dfd86323687613b6b68-dirty
author | cstrittmatter |
---|---|
date | Fri, 15 May 2020 10:19:08 -0400 |
parents | e6437d423693 |
children |
line wrap: on
line source
# SeqSero2 v1.1.1 Salmonella serotype prediction from genome sequencing data. Online version: http://www.denglab.info/SeqSero2 # Introduction SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies # Dependencies SeqSero2 has three workflows: (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing). Allele micro-assembly workflow depends on: 1. Python 3; 2. Biopython 1.73; 3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/); 4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/); 5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download); 6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software); 7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades); 8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/); 9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID). (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants. Raw reads k-mer workflow (originally SeqSeroK) depends on: 1. Python 3; 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files); (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow # Installation ### Conda To install the latest SeqSero2 Conda package (recommended): ``` conda install -c bioconda seqsero2=1.1.1 ``` ### Git To install the SeqSero2 git repository locally: ``` git clone https://github.com/denglab/SeqSero2.git cd SeqSero2 python3 -m pip install --user . ``` ### Other options Third party SeqSero2 installations (may not be the latest version of SeqSero2): \ https://github.com/B-UMMI/docker-images/tree/master/seqsero2 \ https://github.com/denglab/SeqSero2/issues/13 # Executing the code Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions. Usage: SeqSero2_package.py -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a) -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq) -i <file> (/path/to/input/file) -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1) -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode) -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number) -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files) -n <string> (optional, to specify a sample name in the report output) -s <flag> (if '-s' was flagged, SeqSero2 will not output header in SeqSero_result.tsv) --check <flag> (use '--check' flag to check the required dependencies) -v, --version (show program's version number and exit) # Examples Allele mode: # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10") SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz K-mer mode: # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2") SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k") SeqSero2_package.py -m k -t 4 -i assembly.fasta # Output Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'SeqSero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode). # Citation Zhang S, Den-Bakker HC, Li S, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X. SeqSero2: rapid and improved Salmonella serotype determination using whole genome sequencing data. **Appl Environ Microbiology. 2019 Sep; 85(23):e01746-19.** [PMID: 31540993](https://aem.asm.org/content/early/2019/09/17/AEM.01746-19.long) Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X. Salmonella serotype determination utilizing high-throughput genome sequencing data. **J Clin Microbiol. 2015 May;53(5):1685-92.** [PMID: 25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15)