Mercurial > repos > cstrittmatter > ss2v110
view SalmID.py @ 14:047956dacae4 draft default tip
planemo upload commit 70dc513aa7d7ac6785847dfd86323687613b6b68-dirty
author | cstrittmatter |
---|---|
date | Thu, 21 May 2020 22:01:02 -0400 (2020-05-22) |
parents | fc22ec8e924e |
children |
line wrap: on
line source
#!/usr/bin/env python3 import gzip import io import pickle import os import sys from argparse import ArgumentParser try: from .version import SalmID_version except ImportError: SalmID_version = "version unknown" def reverse_complement(sequence): """return the reverse complement of a nucleotide (including IUPAC ambiguous nuceotide codes)""" complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', 'M': 'K', 'R': 'Y', 'W': 'W', 'S': 'S', 'Y': 'R', 'K': 'M', 'V': 'B', 'H': 'D', 'D': 'H', 'B': 'V'} return "".join(complement[base] for base in reversed(sequence)) def parse_args(): "Parse the input arguments, use '-h' for help." parser = ArgumentParser(description='SalmID - rapid Kmer based Salmonella identifier from sequence data') # inputs parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + SalmID_version) parser.add_argument( '-i', '--input_file', type=str, required=False, default='None', metavar='your_fastqgz', help='Single fastq.gz file input, include path to file if file is not in same directory ') parser.add_argument( '-e', '--extension', type=str, required=False, default='.fastq.gz', metavar='file_extension', help='File extension, if specified without "--input_dir", SalmID will attempt to ID all files\n' + ' with this extension in current directory, otherwise files in input directory') parser.add_argument( '-d', '--input_dir', type=str, required=False, default='.', metavar='directory', help='Directory which contains data for identification, when not specified files in current directory will be analyzed.') parser.add_argument( '-r', '--report', type=str, required=False, default='percentage', metavar='percentage, coverage or taxonomy', help='Report either percentage ("percentage") of clade specific kmers recovered, average kmer-coverage ("cov"), or ' 'taxonomy (taxonomic species ID, plus observed mean k-mer coverages and expected coverage).') parser.add_argument( '-m', '--mode', type=str, required=False, default='quick', metavar='quick or thorough', help='Quick [quick] or thorough [thorough] mode') if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) return parser.parse_args() def get_av_read_length(file): """Samples the first 100 reads from a fastq file and return the average read length.""" i = 1 n_reads = 0 total_length = 0 if file.endswith(".gz"): file_content = io.BufferedReader(gzip.open(file)) else: file_content = open(file, "r").readlines() for line in file_content: if i % 4 == 2: total_length += len(line.strip()) n_reads += 1 i += 1 if n_reads == 100: break return total_length / 100 def createKmerDict_reads(list_of_strings, kmer): """Count occurence of K-mers in a list of strings Args: list_of_strings(list of str): nucleotide sequences as a list of strings kmer(int): length of the K-mer to count Returns: dict: dictionary with kmers as keys, counts for each kmer as values""" kmer_table = {} for string in list_of_strings: sequence = string.strip('\n') if len(sequence) >= kmer: for i in range(len(sequence) - kmer + 1): new_mer = sequence[i:i + kmer] new_mer_rc = reverse_complement(new_mer) if new_mer in kmer_table: kmer_table[new_mer.upper()] += 1 else: kmer_table[new_mer.upper()] = 1 if new_mer_rc in kmer_table: kmer_table[new_mer_rc.upper()] += 1 else: kmer_table[new_mer_rc.upper()] = 1 return kmer_table def target_read_kmerizer_multi(file, k, kmerDict_1, kmerDict_2, mode): mean_1 = None mean_2 = None i = 1 n_reads_1 = 0 n_reads_2 = 0 total_coverage_1 = 0 total_coverage_2 = 0 reads_1 = [] reads_2 = [] total_reads = 0 if file.endswith(".gz"): file_content = io.BufferedReader(gzip.open(file)) else: file_content = open(file, "r").readlines() for line in file_content: start = int((len(line) - k) // 2) if i % 4 == 2: total_reads += 1 if file.endswith(".gz"): s1 = line[start:k + start].decode() line = line.decode() else: s1 = line[start:k + start] if s1 in kmerDict_1: n_reads_1 += 1 total_coverage_1 += len(line) reads_1.append(line) if s1 in kmerDict_2: n_reads_2 += 1 total_coverage_2 += len(line) reads_2.append(line) i += 1 if mode == 'quick': if total_coverage_2 >= 800000: break if len(reads_1) == 0: kmer_Dict1 = {} else: kmer_Dict1 = createKmerDict_reads(reads_1, k) mers_1 = set([key for key in kmer_Dict1]) mean_1 = sum([kmer_Dict1[key] for key in kmer_Dict1]) / len(mers_1) if len(reads_2) == 0: kmer_Dict2 = {} else: kmer_Dict2 = createKmerDict_reads(reads_2, k) mers_2 = set([key for key in kmer_Dict2]) mean_2 = sum([kmer_Dict2[key] for key in kmer_Dict2]) / len(mers_2) return kmer_Dict1, kmer_Dict2, mean_1, mean_2, total_reads def mean_cov_selected_kmers(iterable, kmer_dict, clade_specific_kmers): ''' Given an iterable (list, set, dictrionary) returns mean coverage for the kmers in iterable :param iterable: set, list or dictionary containing kmers :param kmer_dict: dictionary with kmers as keys, kmer-frequency as value :param clade_specific_kmers: list, dict or set of clade specific kmers :return: mean frequency as float ''' if len(iterable) == 0: return 0 return sum([kmer_dict[value] for value in iterable]) / len(clade_specific_kmers) def kmer_lists(query_fastq_gz, k, allmers, allmers_rpoB, uniqmers_bongori, uniqmers_I, uniqmers_IIa, uniqmers_IIb, uniqmers_IIIa, uniqmers_IIIb, uniqmers_IV, uniqmers_VI, uniqmers_VII, uniqmers_VIII, uniqmers_bongori_rpoB, uniqmers_S_enterica_rpoB, uniqmers_Escherichia_rpoB, uniqmers_Listeria_ss_rpoB, uniqmers_Lmono_rpoB, mode): dict_invA, dict_rpoB, mean_invA, mean_rpoB, total_reads = target_read_kmerizer_multi(query_fastq_gz, k, allmers, allmers_rpoB, mode) target_mers_invA = set([key for key in dict_invA]) target_mers_rpoB = set([key for key in dict_rpoB]) if target_mers_invA == 0: print('No reads found matching invA, no Salmonella in sample?') else: p_bongori = (len(uniqmers_bongori & target_mers_invA) / len(uniqmers_bongori)) * 100 p_I = (len(uniqmers_I & target_mers_invA) / len(uniqmers_I)) * 100 p_IIa = (len(uniqmers_IIa & target_mers_invA) / len(uniqmers_IIa)) * 100 p_IIb = (len(uniqmers_IIb & target_mers_invA) / len(uniqmers_IIb)) * 100 p_IIIa = (len(uniqmers_IIIa & target_mers_invA) / len(uniqmers_IIIa)) * 100 p_IIIb = (len(uniqmers_IIIb & target_mers_invA) / len(uniqmers_IIIb)) * 100 p_VI = (len(uniqmers_VI & target_mers_invA) / len(uniqmers_VI)) * 100 p_IV = (len(uniqmers_IV & target_mers_invA) / len(uniqmers_IV)) * 100 p_VII = (len(uniqmers_VII & target_mers_invA) / len(uniqmers_VII)) * 100 p_VIII = (len(uniqmers_VIII & target_mers_invA) / len(uniqmers_VIII)) * 100 p_bongori_rpoB = (len(uniqmers_bongori_rpoB & target_mers_rpoB) / len(uniqmers_bongori_rpoB)) * 100 p_Senterica = (len(uniqmers_S_enterica_rpoB & target_mers_rpoB) / len(uniqmers_S_enterica_rpoB)) * 100 p_Escherichia = (len(uniqmers_Escherichia_rpoB & target_mers_rpoB) / len(uniqmers_Escherichia_rpoB)) * 100 p_Listeria_ss = (len(uniqmers_Listeria_ss_rpoB & target_mers_rpoB) / len(uniqmers_Listeria_ss_rpoB)) * 100 p_Lmono = (len(uniqmers_Lmono_rpoB & target_mers_rpoB) / len(uniqmers_Lmono_rpoB)) * 100 bongori_invA_cov = mean_cov_selected_kmers(uniqmers_bongori & target_mers_invA, dict_invA, uniqmers_bongori) I_invA_cov = mean_cov_selected_kmers(uniqmers_I & target_mers_invA, dict_invA, uniqmers_I) IIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIa & target_mers_invA, dict_invA, uniqmers_IIa) IIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIb & target_mers_invA, dict_invA, uniqmers_IIb) IIIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIIa & target_mers_invA, dict_invA, uniqmers_IIIa) IIIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIIb & target_mers_invA, dict_invA, uniqmers_IIIb) IV_invA_cov = mean_cov_selected_kmers(uniqmers_IV & target_mers_invA, dict_invA, uniqmers_IV) VI_invA_cov = mean_cov_selected_kmers(uniqmers_VI & target_mers_invA, dict_invA, uniqmers_VI) VII_invA_cov = mean_cov_selected_kmers(uniqmers_VII & target_mers_invA, dict_invA, uniqmers_VII) VIII_invA_cov = mean_cov_selected_kmers(uniqmers_VIII & target_mers_invA, dict_invA, uniqmers_VIII) S_enterica_rpoB_cov = mean_cov_selected_kmers((uniqmers_S_enterica_rpoB & target_mers_rpoB), dict_rpoB, uniqmers_S_enterica_rpoB) S_bongori_rpoB_cov = mean_cov_selected_kmers((uniqmers_bongori_rpoB & target_mers_rpoB), dict_rpoB, uniqmers_bongori_rpoB) Escherichia_rpoB_cov = mean_cov_selected_kmers((uniqmers_Escherichia_rpoB & target_mers_rpoB), dict_rpoB, uniqmers_Escherichia_rpoB) Listeria_ss_rpoB_cov = mean_cov_selected_kmers((uniqmers_Listeria_ss_rpoB & target_mers_rpoB), dict_rpoB, uniqmers_Listeria_ss_rpoB) Lmono_rpoB_cov = mean_cov_selected_kmers((uniqmers_Lmono_rpoB & target_mers_rpoB), dict_rpoB, uniqmers_Lmono_rpoB) coverages = [Listeria_ss_rpoB_cov, Lmono_rpoB_cov, Escherichia_rpoB_cov, S_bongori_rpoB_cov, S_enterica_rpoB_cov, bongori_invA_cov, I_invA_cov, IIa_invA_cov, IIb_invA_cov, IIIa_invA_cov, IIIb_invA_cov, IV_invA_cov, VI_invA_cov, VII_invA_cov, VIII_invA_cov] locus_scores = [p_Listeria_ss, p_Lmono, p_Escherichia, p_bongori_rpoB, p_Senterica, p_bongori, p_I, p_IIa, p_IIb, p_IIIa, p_IIIb, p_IV, p_VI, p_VII, p_VIII] return locus_scores, coverages, total_reads def report_taxon(locus_covs, average_read_length, number_of_reads): list_taxa = [ 'Listeria ss', 'Listeria monocytogenes', 'Escherichia sp.', # noqa: E201 'Salmonella bongori (rpoB)', 'Salmonella enterica (rpoB)', 'Salmonella bongori (invA)', 'S. enterica subsp. enterica (invA)', 'S. enterica subsp. salamae (invA: clade a)', 'S. enterica subsp. salamae (invA: clade b)', 'S. enterica subsp. arizonae (invA)', 'S. enterica subsp. diarizonae (invA)', 'S. enterica subsp. houtenae (invA)', 'S. enterica subsp. indica (invA)', 'S. enterica subsp. VII (invA)', 'S. enterica subsp. salamae (invA: clade VIII)' ] # noqa: E202 if sum(locus_covs) < 1: rpoB = ('No rpoB matches!', 0) invA = ('No invA matches!', 0) return rpoB, invA, 0.0 else: # given list of scores get taxon if sum(locus_covs[0:5]) > 0: best_rpoB = max(range(len(locus_covs[1:5])), key=lambda x: locus_covs[1:5][x]) + 1 all_rpoB = max(range(len(locus_covs[0:5])), key=lambda x: locus_covs[0:5][x]) if (locus_covs[best_rpoB] != 0) & (all_rpoB == 0): rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB]) elif (all_rpoB == 0) & (round(sum(locus_covs[1:5]), 1) < 1): rpoB = (list_taxa[0], locus_covs[0]) else: rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB]) else: rpoB = ('No rpoB matches!', 0) if sum(locus_covs[5:]) > 0: best_invA = max(range(len(locus_covs[5:])), key=lambda x: locus_covs[5:][x]) + 5 invA = (list_taxa[best_invA], locus_covs[best_invA]) else: invA = ('No invA matches!', 0) if 'Listeria' in rpoB[0]: return rpoB, invA, (average_read_length * number_of_reads) / 3000000 else: return rpoB, invA, (average_read_length * number_of_reads) / 5000000 def main(): ex_dir = os.path.dirname(os.path.realpath(__file__)) args = parse_args() input_file = args.input_file if input_file != 'None': files = [input_file] else: extension = args.extension inputdir = args.input_dir files = [inputdir + '/' + f for f in os.listdir(inputdir) if f.endswith(extension)] report = args.report mode = args.mode f_invA = open(ex_dir + "/invA_mers_dict", "rb") sets_dict_invA = pickle.load(f_invA) f_invA.close() allmers = sets_dict_invA['allmers'] uniqmers_I = sets_dict_invA['uniqmers_I'] uniqmers_IIa = sets_dict_invA['uniqmers_IIa'] uniqmers_IIb = sets_dict_invA['uniqmers_IIb'] uniqmers_IIIa = sets_dict_invA['uniqmers_IIIa'] uniqmers_IIIb = sets_dict_invA['uniqmers_IIIb'] uniqmers_IV = sets_dict_invA['uniqmers_IV'] uniqmers_VI = sets_dict_invA['uniqmers_VI'] uniqmers_VII = sets_dict_invA['uniqmers_VII'] uniqmers_VIII = sets_dict_invA['uniqmers_VIII'] uniqmers_bongori = sets_dict_invA['uniqmers_bongori'] f = open(ex_dir + "/rpoB_mers_dict", "rb") sets_dict = pickle.load(f) f.close() allmers_rpoB = sets_dict['allmers'] uniqmers_bongori_rpoB = sets_dict['uniqmers_bongori'] uniqmers_S_enterica_rpoB = sets_dict['uniqmers_S_enterica'] uniqmers_Escherichia_rpoB = sets_dict['uniqmers_Escherichia'] uniqmers_Listeria_ss_rpoB = sets_dict['uniqmers_Listeria_ss'] uniqmers_Lmono_rpoB = sets_dict['uniqmers_L_mono'] # todo: run kmer_lists() once, create list of tuples containing data to be used fro different reports if report == 'taxonomy': print('file\trpoB\tinvA\texpected coverage') for f in files: locus_scores, coverages, reads = kmer_lists(f, 27, allmers, allmers_rpoB, uniqmers_bongori, uniqmers_I, uniqmers_IIa, uniqmers_IIb, uniqmers_IIIa, uniqmers_IIIb, uniqmers_IV, uniqmers_VI, uniqmers_VII, uniqmers_VIII, uniqmers_bongori_rpoB, uniqmers_S_enterica_rpoB, uniqmers_Escherichia_rpoB, uniqmers_Listeria_ss_rpoB, uniqmers_Lmono_rpoB, mode) pretty_covs = [round(cov, 1) for cov in coverages] report = report_taxon(pretty_covs, get_av_read_length(f), reads) print(f.split('/')[-1] + '\t' + report[0][0] + '[' + str(report[0][1]) + ']' + '\t' + report[1][0] + '[' + str(report[1][1]) + ']' + '\t' + str(round(report[2], 1))) else: print( 'file\tListeria sensu stricto (rpoB)\tL. monocytogenes (rpoB)\tEscherichia spp. (rpoB)\tS. bongori (rpoB)\tS. enterica' + # noqa: E122 '(rpoB)\tS. bongori (invA)\tsubsp. I (invA)\tsubsp. II (clade a: invA)\tsubsp. II' + # noqa: E122 ' (clade b: invA)\tsubsp. IIIa (invA)\tsubsp. IIIb (invA)\tsubsp.IV (invA)\tsubsp. VI (invA)\tsubsp. VII (invA)' + # noqa: E122 '\tsubsp. II (clade VIII : invA)') if report == 'percentage': for f in files: locus_scores, coverages, reads = kmer_lists(f, 27, allmers, allmers_rpoB, uniqmers_bongori, uniqmers_I, uniqmers_IIa, uniqmers_IIb, uniqmers_IIIa, uniqmers_IIIb, uniqmers_IV, uniqmers_VI, uniqmers_VII, uniqmers_VIII, uniqmers_bongori_rpoB, uniqmers_S_enterica_rpoB, uniqmers_Escherichia_rpoB, uniqmers_Listeria_ss_rpoB, uniqmers_Lmono_rpoB, mode) pretty_scores = [str(round(score)) for score in locus_scores] print(f.split('/')[-1] + '\t' + '\t'.join(pretty_scores)) else: for f in files: locus_scores, coverages, reads = kmer_lists(f, 27, allmers, allmers_rpoB, uniqmers_bongori, uniqmers_I, uniqmers_IIa, uniqmers_IIb, uniqmers_IIIa, uniqmers_IIIb, uniqmers_IV, uniqmers_VI, uniqmers_VII, uniqmers_VIII, uniqmers_bongori_rpoB, uniqmers_S_enterica_rpoB, uniqmers_Escherichia_rpoB, uniqmers_Listeria_ss_rpoB, uniqmers_Lmono_rpoB, mode) pretty_covs = [str(round(cov, 1)) for cov in coverages] print(f.split('/')[-1] + '\t' + '\t'.join(pretty_covs)) if __name__ == '__main__': main()