Mercurial > repos > davidmurphy > codonlogo
view corebio/ssearch_io/fasta.py @ 14:778f03497adb
Uploaded
author | davidmurphy |
---|---|
date | Fri, 24 Feb 2012 11:37:26 -0500 |
parents | c55bdc2fb9fa |
children |
line wrap: on
line source
# Copyright (c) 2006 John Gilman # # This software is distributed under the MIT Open Source License. # <http://www.opensource.org/licenses/mit-license.html> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Read the output of a fasta sequence similarity search. FASTA is a DNA and Protein sequence alignment software package first described by David J. Lipman and William R. Pearson in 1985. In addition to rapid heuristic search methods, the FASTA package provides SSEARCH, an implementation of the optimal Smith Waterman algorithm. The module can parse the output from fasta, ssearch and other search programs in the fasta collection. It will parse both default ('-m 1') and compact ('-m 9 -d 0') output. Refs: ftp.virginia.edu/pub/fasta http://en.wikipedia.org/wiki/FASTA """ from corebio.utils import Reiterate, Token, isblank from corebio.ssearch_io import Report, Result, Hit, Annotation, Alignment from math import floor import re __all__ = 'read' _rangere = re.compile(r"\((\d+)-\d+:(\d+)-\d+\)") def read(fin) : """Read and parse a fasta search output file. returns: a list of Results """ scanner = _scan(fin) report = None result = None hit = None #query_seq = None #target_seq = None alignment_num = 0 for token in scanner : #print token typeof = token.typeof value = token.data if typeof == 'begin_report' : report = Report() elif typeof == 'algorithm' : report.algorithm = value elif typeof == 'algorithm_version' : report.algorithm_version = value elif typeof == 'algorithm_reference' : report.algorithm_reference = value elif typeof == 'database_name' : report.database_name = value elif typeof == 'database_letters' : report.database_letters = value elif typeof == 'database_entries' : report.database_entries = value elif typeof == 'end_report' : # Final sanity checking break elif typeof == 'parameter' : key = value[0] value = value[1] report.parameters[key] = value elif typeof == 'begin_result' : result = Result() report.results.append(result) elif typeof == 'query_name' : result.query.name = value elif typeof == 'query_description' : result.query.description = value elif typeof == 'end_result' : pass elif typeof == 'begin_hit' : hit = Hit() elif typeof == 'target_name' : hit.target.name = value elif typeof == 'target_description' : hit.target.description = value elif typeof == 'target_length' : hit.target.length = value elif typeof == 'raw_score' : hit.raw_score = value elif typeof == 'bit_score' : hit.bit_score = value elif typeof == 'significance' : hit.significance = value elif typeof == 'end_hit' : result.hits.append(hit) hit = None elif typeof == 'begin_alignment' : alignment = Alignment() tseq = [] qseq = [] elif typeof == 'end_alignment' : tseq = ''.join(tseq) qseq = ''.join(qseq) L = max (len(tseq), len(qseq) ) tseq = tseq.ljust(L).replace(' ', '.') qseq = qseq.ljust(L).replace(' ', '.') alignment.query_seq = tseq alignment.target_seq = qseq result.hits[alignment_num].alignments.append(alignment) alignment_num+=1 tseq = None qseq = None elif typeof == 'target_seq' : tseq += value elif typeof == 'query_seq' : qseq += value elif typeof == 'alignment_raw_score' : alignment.raw_score = value elif typeof == 'alignment_bit_score' : alignment.bit_score = value elif typeof == 'alignment_significance' : alignment.significance = value elif typeof == 'alignment_length' : alignment.length = value elif typeof == 'alignment_similar' : alignment.similar = value elif typeof == 'alignment_identical' : alignment.identical = value elif typeof == 'alignment_query_start' : alignment.query_start = value elif typeof == 'alignment_target_start' : alignment.target_start = value else: # Should never get here. raise RuntimeError("Unrecoverable internal parse error (SPE)") pass return report # End method read() def _scan(fin) : def next_nonempty(i) : L = i.next() while L.strip() == '': L = i.next() return L lines = Reiterate(iter(fin)) try : yield Token("begin_report", lineno= lines.index()) # find header line : "SSEARCH searches a sequence data bank" L = lines.next() if L[0] == '#' : yield Token("parameter", ("command", L[1:].strip()), lines.index()) L = lines.next() while not L : L= lines.next() algorithm = L.split()[0] expected = [ "SSEARCH", "FASTA","TFASTA","FASTX", "FASTY","TFASTX","TFASTY"] if algorithm not in expected: raise ValueError("Parse failed: line %d" % lines.index() ) yield Token ("algorithm", algorithm, lines.index() ) # Next line should be the version L = lines.next() if not L.startswith(" version") : raise ValueError("Parse failed: Cannot find version.") yield Token( "algorithm_version", L[8:].split()[0].strip(), lines.index()) # Algorithm reference L = lines.next() if not L.startswith("Please cite:") : raise ValueError("Parse failed: Expecting citation" + L) cite = lines.next().strip() + ' ' + lines.next().strip() yield Token( "algorithm_reference", cite) # Find line "searching testset.fa library" L = lines.next() while not L.startswith("searching") : L = lines.next() yield Token("database_name", L[10:-8], lines.index() ) # Results L = lines.next() while isblank(L) : L = lines.next() if ">>>" not in L : raise ValueError("Parse failed on line %d: " % lines.index()) while ">>>" in L : yield Token("begin_result", lineno= lines.index()) index = L.find('>>>') (name, description) = L[index+3:].split(' ',1) yield Token("query_name", name, lines.index()) yield Token("query_description", description, lines.index()) while not L.startswith("The best scores are:") : L = lines.next() L = lines.next() # hits while not isblank(L) : lineno = lines.index() desc = L[0:49] yield Token("begin_hit", lineno= lineno) yield Token("target_description", desc, lineno, 0) yield Token("target_name", desc.split(' ',1)[0], lineno, 0) yield Token("target_length", int(L[52:56]), lineno, 52) fields = L[57:].split() raw, bit, sig = fields[0], fields[1], fields[2] #print raw, bit, sig yield Token("raw_score", float(raw), lineno, 57) yield Token("bit_score", float(bit), lineno) yield Token("significance", float(sig), lineno) yield Token("end_hit", lineno=lineno) L = lines.next() # Optimal alignment information L = next_nonempty(lines) #print ">>>", L, L.startswith('>>') while L.startswith('>>'): if L.startswith('>>>') : break yield Token("begin_alignment", lineno=lines.index() ) # 1 2 3 4 #01234567890123456789012345678901234567890123456789 # s-w opt: 46 Z-score: 70.7 bits: 18.5 E(): 3.6 L = lines.next() fields = L.split() raw, bit, sig = fields[2], fields[6], fields[8] yield Token("alignment_raw_score", float(raw), lineno) yield Token("alignment_bit_score", float(bit), lineno) yield Token("alignment_significance", float(sig), lineno) #Smith-Waterman score: 46; 38.095% identity (71.429% similar) in 21 aa overlap (2-22:36-56) L = lines.next() lineno = lines.index() fields = L.split() assert( len(fields) ==12) alen = int(fields[8]) identical = int( floor(0.5+alen* float(fields[3][:-1])/100.)) similar = int( floor(0.5+alen* float(fields[3][:-1])/100.)) yield Token("alignment_length", alen, lineno) yield Token("alignment_similar", similar, lineno) yield Token("alignment_identical", identical, lineno) m = _rangere.match( fields[11]) assert (m is not None) yield Token("alignment_query_start", int(m.group(1))-1, lineno) yield Token("alignment_target_start", int(m.group(2))-1, lineno) count = 1 while True: L = lines.next() count += 1 if L.startswith('>>'): break if '>>>' in L: lines.push(L) break if 'residues' in L and 'sequences' in L : lines.push(L) break if not L or L[0].isspace() : continue # there are 2 lines before the first query sequence (but # we started the count at 1). There is 1 line between query # and target, 3 lines between target and query, unless the # query ends before the ends and the target wraps onto another # Then there are two lines between target and target. # Smith-Waterman score: 34; 35.294% identity ... # # 30 40 50 60 70 # d1pfsa EGFLHLEDKPHPLQCQFFVESVIPAGSYQVPYRINVNNG-RPELAFDFKAMKRA # : . . .:: .: .:: # d8rxna MKKYVCTVCGYEYDPAEGDPDNGVKPGTSFDDLPADWVCPVCGA # 10 20 30 40 # # d8rxna PKSEFEAA # 50 lineno=lines.index() if count==4 : yield Token("query_seq", L[7:].rstrip(), lineno) else : yield Token("target_seq", L[7:].rstrip(),lineno) count = 0 yield Token("end_alignment", lineno=lines.index() ) yield Token("end_result", lineno= lines.index()) L = next_nonempty(lines) # End results # "13355 residues in 93 query sequences" # "13355 residues in 93 library sequences" #print '>>', L LL = L.split() yield Token("database_letters",int(LL[0]), lines.index() ) yield Token("database_entries", int(LL[3]), lines.index() ) yield Token("end_report", lineno= lines.index()) except StopIteration : raise ValueError("Premature end of file ")