Mercurial > repos > davidmurphy > codonlogo
view corebio/ssearch_io/__init__.py @ 15:981eb8c3a756 default tip
Uploaded
author | davidmurphy |
---|---|
date | Sat, 31 Mar 2012 16:07:07 -0400 |
parents | c55bdc2fb9fa |
children |
line wrap: on
line source
# Copyright (c) 2006 John Gilman # # This software is distributed under the MIT Open Source License. # <http://www.opensource.org/licenses/mit-license.html> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Parse the output of BLAST and similar sequence search analysis reports. The result of a sequence database search is represented by the Report class. o Each Report contains one or more results, one for each database query. o Each Result contains one or more hits o Each Hit may contain one or more Alignments (High scoring Sequence pairs) CoreBio is often capable of guessing the correct format: >>> from corebio import ssearch_io >>> afile = open("test_corebio/data/ssearch/ssearch_out.txt") >>> report = ssearch_io.read(afile) >>> print report Alternatively, each report type has a seperate module. Each module defines a read(fin) method that can parse that report format. >>> from corebio.ssearch_io import fasta >>> report = fasta.read( open("test_corebio/data/ssearch/ssearch_out.txt") ) >>> print report Module Application Comments --------------------------------------------------------------------------- fasta FASTA / SSEARCH Default (-m 1) or compact (-m 9 -d 0) blastxml NCBI Blast NCBI XML format Status: Beta """ # Dev. References : # Inspired by Bioperls searchIO system # http://www.bioperl.org/wiki/HOWTO:SearchIO __all__ = ['read', 'Report', 'Result', 'Hit','Annotation', 'Alignment'] from corebio.utils import stdrepr def read(fin) : """ Read and parse an analysis report. returns : A database search Report. raises : ValueError - If the file cannot be parsed """ import fasta import blastxml parsers = (fasta, blastxml) for p in parsers: try: return p.read(fin) except ValueError, e: pass fin.seek(0) # FIXME. Non seakable stdin? raise ValueError("Cannot parse sequence file: Tried fasta and blastxml") class Report(object) : """The results of a database search. The Report contains a list of 1 or more Results, one for each query. Each query result containts a list of hits. Each Hit contains a list of HSP's (High scoring segment pairs). The structure of the report will vary somewhat depending on the source. algorithm -- e.g. 'BLASTX' algorithm_version -- e.g. '2.2.4 [Aug-26-2002]' algorithm_reference -- database_name -- e.g. 'test.fa' database_letters -- number of residues in database e.g. 1291 database_entries -- number of database entries parameters -- Dictionary of parameters used in search results -- A list of list of Results, one per query """ __slots__ = ['algorithm', 'algorithm_version', 'algorithm_reference','database_name', 'database_letters', 'database_entries', 'parameters', 'results'] def __init__(self) : for name in self.__slots__ : setattr(self, name, None) self.parameters = {} self.results = [] def __repr__(self): return stdrepr(self) class Result(object) : """ The result from searching a database with a single query sequence. query -- Information about the query sequence statistics -- A dictionary of search statistics hits -- A list of Hits """ __slots__ = ['query', 'statistics', 'hits'] def __init__(self) : for name in self.__slots__ : setattr(self, name, None) self.query = Annotation() self.statistics = {} self.hits = [] def __repr__(self): return stdrepr(self) class Hit(object) : """ A search hit between a query sequence and a subject sequence. Each hit may have one or more Alignments target -- Information about the target sequence. raw_score -- Typically the ignficance of the hit in bits, e.g. 92.0 significance -- Typically evalue. e.g '2e-022' alignments -- A list of alignments between subject and target """ __slots__ =['target', 'raw_score', 'bit_score', 'significance', 'alignments'] def __init__(self) : for name in self.__slots__ : setattr(self, name, None) self.target = Annotation() self.alignments = [] def __repr__(self): return stdrepr(self) class Annotation(object) : """ Information about a subject or query sequence. name -- subject sequence name, e.g. '443893|124775' description -- e.g. 'LaForas sequence' length -- subject sequence length, e.g. 331 locus -- e.g. '124775' accession -- e.g. '443893' """ # Fixme: change into generic sequence annotation class? __slots__ = ['name', 'description', 'length', 'locus', 'accession', ] def __init__(self): for name in self.__slots__ : setattr(self, name, None) def __repr__(self): return stdrepr(self) class Alignment(object): """An alignment between query and subject sequences. For BLAST, these are High scoring Segment pairs (HSPs) raw_score -- Typically signficance of the hit in bits, e.g. 92.0 significance -- Typically evalue. e.g '2e-022' similar -- number of conserved residues #FIXME eiter frac or num identical -- number of identical residues gaps -- number of gaps length -- length of the alignment query_seq -- query string from alignment target_seq -- hit string from alignment mid_seq -- query_start -- query_frame -- target_start -- target_frame -- """ __slots__ = ['raw_score', 'bit_score', 'significance', 'similar', 'identical', 'gaps', 'length', 'query_seq', 'target_seq', 'mid_seq', 'query_start', 'query_frame', 'target_start', 'target_frame'] def __init__(self): for name in self.__slots__ : setattr(self, name, None) def __repr__(self): return stdrepr(self)