Mercurial > repos > davidmurphy > codonlogo
view test_weblogo.py @ 9:f3462128e87c
Minor alterations to the galaxy interface with some better examples and error messages added.
author | davidmurphy |
---|---|
date | Mon, 30 Jan 2012 08:17:57 -0500 |
parents | c55bdc2fb9fa |
children |
line wrap: on
line source
#!/usr/bin/env python # Copyright (c) 2006, The Regents of the University of California, through # Lawrence Berkeley National Laboratory (subject to receipt of any required # approvals from the U.S. Dept. of Energy). All rights reserved. # This software is distributed under the new BSD Open Source License. # <http://www.opensource.org/licenses/bsd-license.html> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and or other materials provided with the distribution. # # (3) Neither the name of the University of California, Lawrence Berkeley # National Laboratory, U.S. Dept. of Energy nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import unittest import weblogolib from weblogolib import * from weblogolib import parse_prior, GhostscriptAPI from weblogolib.color import * from weblogolib.colorscheme import * from StringIO import StringIO import sys from numpy import array, asarray, float64, ones, zeros, int32,all,any, shape import numpy as na from corebio import seq_io from corebio.seq import * # python2.3 compatability from corebio._future.subprocess import * from corebio._future import resource_stream from corebio.moremath import entropy from math import log, sqrt codon_alphabetU=['AAA', 'AAC', 'AAG', 'AAU', 'ACA', 'ACC', 'ACG', 'ACU', 'AGA', 'AGC', 'AGG', 'AGU', 'AUA', 'AUC', 'AUG', 'AUU', 'CAA', 'CAC', 'CAG', 'CAU', 'CCA', 'CCC', 'CCG', 'CCU', 'CGA', 'CGC', 'CGG', 'CGU', 'CUA', 'CUC', 'CUG', 'CUU', 'GAA', 'GAC', 'GAG', 'GAU', 'GCA', 'GCC', 'GCG', 'GCU', 'GGA', 'GGC', 'GGG', 'GGU', 'GUA', 'GUC', 'GUG', 'GUU', 'UAA', 'UAC', 'UAG', 'UAU', 'UCA', 'UCC', 'UCG', 'UCU', 'UGA', 'UGC', 'UGG', 'UGU', 'UUA', 'UUC', 'UUG', 'UUU'] codon_alphabetT=['AAA', 'AAC', 'AAG', 'AAT', 'ACA', 'ACC', 'ACG', 'ACT', 'AGA', 'AGC', 'AGG', 'AGT', 'ATA', 'ATC', 'ATG', 'ATT', 'CAA', 'CAC', 'CAG', 'CAT', 'CCA', 'CCC', 'CCG', 'CCT', 'CGA', 'CGC', 'CGG', 'CGT', 'CTA', 'CTC', 'CTG', 'CTT', 'GAA', 'GAC', 'GAG', 'GAT', 'GCA', 'GCC', 'GCG', 'GCT', 'GGA', 'GGC', 'GGG', 'GGT', 'GTA', 'GTC', 'GTG', 'GTT', 'TAA', 'TAC', 'TAG', 'TAT', 'TCA', 'TCC', 'TCG', 'TCT', 'TGA', 'TGC', 'TGG', 'TGT', 'TTA', 'TTC', 'TTG', 'TTT'] def testdata_stream( name ): return resource_stream(__name__, 'tests/data/'+name, __file__) class test_logoformat(unittest.TestCase) : def test_options(self) : options = LogoOptions() class test_ghostscript(unittest.TestCase) : def test_version(self) : version = GhostscriptAPI().version class test_parse_prior(unittest.TestCase) : def assertTrue(self, bool) : self.assertEquals( bool, True) def test_parse_prior_none(self) : self.assertEquals( None, parse_prior(None, unambiguous_protein_alphabet ) ) self.assertEquals( None, parse_prior( 'none', unambiguous_protein_alphabet ) ) self.assertEquals( None, parse_prior( 'noNe', None) ) def test_parse_prior_equiprobable(self) : self.assertTrue( all(20.*equiprobable_distribution(20) == parse_prior( 'equiprobable', unambiguous_protein_alphabet ) ) ) self.assertTrue( all( 1.2* equiprobable_distribution(3) == parse_prior( ' equiprobablE ', Alphabet('123'), 1.2 ) ) ) def test_parse_prior_percentage(self) : #print parse_prior( '50%', unambiguous_dna_alphabet, 1. ) self.assertTrue( all( equiprobable_distribution(4) == parse_prior( '50%', unambiguous_dna_alphabet, 1. ) ) ) self.assertTrue( all( equiprobable_distribution(4) == parse_prior( ' 50.0 % ', unambiguous_dna_alphabet, 1. ) ) ) self.assertTrue( all( array( (0.3,0.2,0.2,0.3), float64) == parse_prior( ' 40.0 % ', unambiguous_dna_alphabet, 1. ) ) ) def test_parse_prior_float(self) : self.assertTrue( all( equiprobable_distribution(4) == parse_prior( '0.5', unambiguous_dna_alphabet, 1. ) ) ) self.assertTrue( all( equiprobable_distribution(4) == parse_prior( ' 0.500 ', unambiguous_dna_alphabet, 1. ) ) ) self.assertTrue( all( array( (0.3,0.2,0.2,0.3), float64) == parse_prior( ' 0.40 ', unambiguous_dna_alphabet, 1. ) ) ) def test_auto(self) : self.assertTrue( all(4.*equiprobable_distribution(4) == parse_prior( 'auto', unambiguous_dna_alphabet ) ) ) self.assertTrue( all(4.*equiprobable_distribution(4) == parse_prior( 'automatic', unambiguous_dna_alphabet ) ) ) def test_weight(self) : self.assertTrue( all(4.*equiprobable_distribution(4) == parse_prior( 'automatic', unambiguous_dna_alphabet ) ) ) self.assertTrue( all(123.123*equiprobable_distribution(4) == parse_prior( 'auto', unambiguous_dna_alphabet , 123.123) ) ) def test_explicit(self) : s = "{'A':10, 'C':40, 'G':40, 'T':10}" p = array( (10, 40, 40,10), float64)*4./100. self.assertTrue( all( p == parse_prior( s, unambiguous_dna_alphabet ) ) ) class test_logooptions(unittest.TestCase) : def test_create(self) : opt = LogoOptions() opt.small_fontsize =10 options = repr(opt) opt = LogoOptions(title="sometitle") assert opt.title == "sometitle" class test_logosize(unittest.TestCase) : def test_create(self) : s = LogoSize(101.0,10.0) assert s.stack_width == 101.0 r = repr(s) class test_seqlogo(unittest.TestCase) : # FIXME: The version of python used by Popen may not be the # same as that used to run this test. def _exec(self, args, outputtext, returncode =0, stdin=None) : if not stdin : stdin = testdata_stream("cap.fa") args = ["./weblogo"] + args p = Popen(args,stdin=stdin,stdout=PIPE, stderr=PIPE) (out, err) = p.communicate() if returncode ==0 and p.returncode >0 : print err self.assertEquals(returncode, p.returncode) if returncode == 0 : self.assertEquals( len(err), 0) for item in outputtext : self.failUnless(item in out) def test_malformed_options(self) : self._exec( ["--notarealoption"], [], 2) self._exec( ["extrajunk"], [], 2) self._exec( ["-I"], [], 2) def test_help_option(self) : self._exec( ["-h"], ["options"]) self._exec( ["--help"], ["options"]) def test_version_option(self) : self._exec( ['--version'], weblogolib.__version__) def test_default_build(self) : self._exec( [], ["%%Title: Sequence Logo:"] ) # Format options def test_width(self) : self._exec( ['-W','1234'], ["/stack_width 1234"] ) self._exec( ['--stack-width','1234'], ["/stack_width 1234"] ) def test_height(self) : self._exec( ['-H','1234'], ["/stack_height 1234"] ) self._exec( ['--stack-height','1234'], ["/stack_height 1234"] ) def test_stacks_per_line(self) : self._exec( ['-n','7'], ["/stacks_per_line 7 def"] ) self._exec( ['--stacks-per-line','7'], ["/stacks_per_line 7 def"] ) def test_title(self) : self._exec( ['-t', '3456'], ['/logo_title (3456) def', '/show_title True def']) self._exec( ['-t', ''], ['/logo_title () def', '/show_title False def']) self._exec( ['--title', '3456'], ['/logo_title (3456) def', '/show_title True def']) class test_which(unittest.TestCase) : def test_which(self): tests = ( (seq_io.read(testdata_stream('cap.fa')), codon_alphabetT), (seq_io.read(testdata_stream('capu.fa')), codon_alphabetU), #(seq_io.read(testdata_stream('cox2.msf')), unambiguous_protein_alphabet), #(seq_io.read(testdata_stream('Rv3829c.fasta')), unambiguous_protein_alphabet), ) for t in tests : self.failUnlessEqual(which_alphabet(t[0]), t[1]) class test_colorscheme(unittest.TestCase) : def test_colorgroup(self) : cr = ColorGroup( "ABC", "black", "Because") self.assertEquals( cr.description, "Because") def test_colorscheme(self) : cs = ColorScheme([ ColorGroup("G", "orange"), ColorGroup("TU", "red"), ColorGroup("C", "blue"), ColorGroup("A", "green") ], title = "title", description = "description", ) self.assertEquals( cs.color('A'), Color.by_name("green")) self.assertEquals( cs.color('X'), cs.default_color) class test_color(unittest.TestCase) : # 2.3 Python compatibility assertTrue = unittest.TestCase.failUnless assertFalse = unittest.TestCase.failIf def test_color_names(self) : names = Color.names() self.failUnlessEqual( len(names), 147) for n in names: c = Color.by_name(n) self.assertTrue( c != None ) def test_color_components(self) : white = Color.by_name("white") self.failUnlessEqual( 1.0, white.red) self.failUnlessEqual( 1.0, white.green) self.failUnlessEqual( 1.0, white.blue) c = Color(0.3, 0.4, 0.2) self.failUnlessEqual( 0.3, c.red) self.failUnlessEqual( 0.4, c.green) self.failUnlessEqual( 0.2, c.blue) c = Color(0,128,0) self.failUnlessEqual( 0.0, c.red) self.failUnlessEqual( 128./255., c.green) self.failUnlessEqual( 0.0, c.blue) def test_color_from_rgb(self) : white = Color.by_name("white") self.failUnlessEqual(white, Color(1.,1.,1.) ) self.failUnlessEqual(white, Color(255,255,255) ) self.failUnlessEqual(white, Color.from_rgb(1.,1.,1.) ) self.failUnlessEqual(white, Color.from_rgb(255,255,255) ) def test_color_from_hsl(self) : red = Color.by_name("red") lime = Color.by_name("lime") saddlebrown = Color.by_name("saddlebrown") darkgreen = Color.by_name("darkgreen") blue = Color.by_name("blue") green = Color.by_name("green") self.failUnlessEqual(red, Color.from_hsl(0, 1.0,0.5) ) self.failUnlessEqual(lime, Color.from_hsl(120, 1.0, 0.5) ) self.failUnlessEqual(blue, Color.from_hsl(240, 1.0, 0.5) ) self.failUnlessEqual(Color.by_name("gray"), Color.from_hsl(0,0,0.5) ) self.failUnlessEqual(saddlebrown, Color.from_hsl(25, 0.76, 0.31) ) self.failUnlessEqual(darkgreen, Color.from_hsl(120, 1.0, 0.197) ) def test_color_by_name(self): white = Color.by_name("white") self.failUnlessEqual(white, Color.by_name("white")) self.failUnlessEqual(white, Color.by_name("WHITE")) self.failUnlessEqual(white, Color.by_name(" wHiTe \t\n\t")) self.failUnlessEqual(Color(255,255,240), Color.by_name("ivory")) self.failUnlessEqual(Color(70,130,180), Color.by_name("steelblue")) self.failUnlessEqual(Color(0,128,0), Color.by_name("green")) def test_color_from_invalid_name(self): self.failUnlessRaises( ValueError, Color.by_name, "not_a_color") def test_color_clipping(self): red = Color.by_name("red") self.failUnlessEqual(red, Color(255,0,0) ) self.failUnlessEqual(red, Color(260,-10,0) ) self.failUnlessEqual(red, Color(1.1,-0.,-1.) ) self.failUnlessEqual( Color(1.0001, 213.0, 1.2).red, 1.0 ) self.failUnlessEqual( Color(-0.001, -2183.0, -1.0).red, 0.0 ) self.failUnlessEqual( Color(1.0001, 213.0, 1.2).green, 1.0 ) self.failUnlessEqual( Color(-0.001, -2183.0, -1.0).green, 0.0 ) self.failUnlessEqual( Color(1.0001, 213.0, 1.2).blue, 1.0 ) self.failUnlessEqual( Color(-0.001, -2183.0, -1.0).blue, 0.0 ) def test_color_fail_on_mixed_type(self): self.failUnlessRaises( TypeError, Color.from_rgb, 1,1,1.0 ) self.failUnlessRaises( TypeError, Color.from_rgb, 1.0,1,1.0 ) def test_color_red(self) : # Check Usage comment in Color red = Color.by_name("red") self.failUnlessEqual( red , Color(255,0,0) ) self.failUnlessEqual( red, Color(1., 0., 0.) ) self.failUnlessEqual( red , Color.from_rgb(1.,0.,0.) ) self.failUnlessEqual( red , Color.from_rgb(255,0,0) ) self.failUnlessEqual( red , Color.from_hsl(0.,1., 0.5) ) self.failUnlessEqual( red , Color.from_string("red") ) self.failUnlessEqual( red , Color.from_string("RED") ) self.failUnlessEqual( red , Color.from_string("#F00") ) self.failUnlessEqual( red , Color.from_string("#FF0000") ) self.failUnlessEqual( red , Color.from_string("rgb(255, 0, 0)") ) self.failUnlessEqual( red , Color.from_string("rgb(100%, 0%, 0%)") ) self.failUnlessEqual( red , Color.from_string("hsl(0, 100%, 50%)") ) def test_color_from_string(self) : purple = Color(128,0,128) red = Color(255,0,0) skyblue = Color(135,206,235) red_strings = ("red", "ReD", "RED", " Red \t", "#F00", "#FF0000", "rgb(255, 0, 0)", "rgb(100%, 0%, 0%)", "hsl(0, 100%, 50%)") for s in red_strings: self.failUnlessEqual( red, Color.from_string(s) ) skyblue_strings = ("skyblue", "SKYBLUE", " \t\n SkyBlue \t", "#87ceeb", "rgb(135,206,235)" ) for s in skyblue_strings: self.failUnlessEqual( skyblue, Color.from_string(s) ) def test_color_equality(self): c1 = Color(123,99,12) c2 = Color(123,99,12) self.failUnlessEqual(c1,c2) class test_Dirichlet(unittest.TestCase) : # 2.3 Python compatibility assertTrue = unittest.TestCase.failUnless assertFalse = unittest.TestCase.failIf def test_init(self) : d = Dirichlet( ( 1,1,1,1,) ) def test_random(self) : def do_test( alpha, samples = 1000) : ent = zeros( (samples,), float64) #alpha = ones( ( K,), Float64 ) * A/K #pt = zeros( (len(alpha) ,), Float64) d = Dirichlet(alpha) for s in range(samples) : p = d.sample() #print p #pt +=p ent[s] = entropy(p) #print pt/samples m = mean(ent) v = var(ent) dm = d.mean_entropy() dv = d.variance_entropy() #print alpha, ':', m, v, dm, dv error = 4. * sqrt(v/samples) self.assertTrue( abs(m-dm) < error) self.assertTrue( abs(v-dv) < error) # dodgy error estimate do_test( (1., 1.) ) do_test( (2., 1.) ) do_test( (3., 1.) ) do_test( (4., 1.) ) do_test( (5., 1.) ) do_test( (6., 1.) ) do_test( (1., 1.) ) do_test( (20., 20.) ) do_test( (1., 1., 1., 1., 1., 1., 1., 1., 1., 1.) ) do_test( (.1, .1, .1, .1, .1, .1, .1, .1, .1, .1) ) do_test( (.01, .01, .01, .01, .01, .01, .01, .01, .01, .01) ) do_test( (2.0, 6.0, 1.0, 1.0) ) def test_mean(self) : alpha = ones( ( 10,), float64 ) * 23. d = Dirichlet(alpha) m = d.mean() self.assertAlmostEqual( m[2], 1./10) self.assertAlmostEqual( sum(m), 1.0) def test_covariance(self) : alpha = ones( ( 4,), float64 ) d = Dirichlet(alpha) cv = d.covariance() self.assertEqual( cv.shape, (4,4) ) self.assertAlmostEqual( cv[0,0], 1.0 * (1.0 - 1./4.0)/ (4.0 * 5.0) ) self.assertAlmostEqual( cv[0,1], - 1 / ( 4. * 4. * 5.) ) def test_mean_x(self) : alpha = (1.0, 2.0, 3.0, 4.0) xx = (2.0, 2.0, 2.0, 2.0) m = Dirichlet(alpha).mean_x(xx) self.assertEquals( m, 2.0) alpha = (1.0, 1.0, 1.0, 1.0) xx = (2.0, 3.0, 4.0, 3.0) m = Dirichlet(alpha).mean_x(xx) self.assertEquals( m, 3.0) def test_variance_x(self) : alpha = (1.0, 1.0, 1.0, 1.0) xx = (2.0, 2.0, 2.0, 2.0) v = Dirichlet(alpha).variance_x(xx) self.assertAlmostEquals( v, 0.0) alpha = (1.0, 2.0, 3.0, 4.0) xx = (2.0, 0.0, 1.0, 10.0) v = Dirichlet(alpha).variance_x(xx) #print v # TODO: Don't actually know if this is correct def test_relative_entropy(self): alpha = (2.0, 10.0, 1.0, 1.0) d = Dirichlet(alpha) pvec = (0.1, 0.2, 0.3, 0.4) rent = d.mean_relative_entropy(pvec) vrent = d.variance_relative_entropy(pvec) low, high = d.interval_relative_entropy(pvec, 0.95) #print #print '> ', rent, vrent, low, high # This test can fail randomly, but the precision form a few # thousand samples is low. Increasing samples, 1000->2000 samples = 2000 sent = zeros( (samples,), float64) for s in range(samples) : post = d.sample() e = -entropy(post) for k in range(4) : e += - post[k] * log(pvec[k]) sent[s] = e sent.sort() self.assertTrue( abs(sent.mean() - rent) < 4.*sqrt(vrent) ) self.assertAlmostEqual( sent.std(), sqrt(vrent), 1 ) self.assertTrue( abs(low-sent[ int( samples *0.025)])<0.2 ) self.assertTrue( abs(high-sent[ int( samples *0.975)])<0.2 ) #print '>>', mean(sent), var(sent), sent[ int( samples *0.025)] ,sent[ int( samples *0.975)] def mean( a) : return sum(a)/ len(a) def var(a) : return (sum(a*a) /len(a) ) - mean(a)**2 if __name__ == '__main__': unittest.main()