Mercurial > repos > davidvanzessen > argalaxy_tools
comparison pattern_plots.r @ 4:5ffd52fc35c4 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Mon, 12 Dec 2016 05:22:37 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 3:beaa487ecf43 | 4:5ffd52fc35c4 |
|---|---|
| 1 library(ggplot2) | |
| 2 library(reshape2) | |
| 3 library(scales) | |
| 4 | |
| 5 args <- commandArgs(trailingOnly = TRUE) | |
| 6 | |
| 7 input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt" | |
| 8 | |
| 9 plot1.path = args[2] | |
| 10 plot1.png = paste(plot1.path, ".png", sep="") | |
| 11 plot1.txt = paste(plot1.path, ".txt", sep="") | |
| 12 | |
| 13 plot2.path = args[3] | |
| 14 plot2.png = paste(plot2.path, ".png", sep="") | |
| 15 plot2.txt = paste(plot2.path, ".txt", sep="") | |
| 16 | |
| 17 plot3.path = args[4] | |
| 18 plot3.png = paste(plot3.path, ".png", sep="") | |
| 19 plot3.txt = paste(plot3.path, ".txt", sep="") | |
| 20 | |
| 21 clean.output = args[5] | |
| 22 | |
| 23 dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1) | |
| 24 | |
| 25 | |
| 26 | |
| 27 classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE") | |
| 28 xyz = c("x", "y", "z") | |
| 29 new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep=".")) | |
| 30 | |
| 31 names(dat) = new.names | |
| 32 | |
| 33 clean.dat = dat | |
| 34 clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))] | |
| 35 | |
| 36 write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA) | |
| 37 | |
| 38 dat["RGYW.WRCY",] = colSums(dat[c(13,14),], na.rm=T) | |
| 39 dat["TW.WA",] = colSums(dat[c(15,16),], na.rm=T) | |
| 40 | |
| 41 data1 = dat[c("RGYW.WRCY", "TW.WA"),] | |
| 42 | |
| 43 data1 = data1[,names(data1)[grepl(".z", names(data1))]] | |
| 44 names(data1) = gsub("\\..*", "", names(data1)) | |
| 45 | |
| 46 data1 = melt(t(data1)) | |
| 47 | |
| 48 names(data1) = c("Class", "Type", "value") | |
| 49 | |
| 50 data1 = data1[order(data1$Type),] | |
| 51 | |
| 52 write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
| 53 | |
| 54 p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) | |
| 55 p = p + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("RGYW.WRCY" = "white", "TW.WA" = "blue4")) | |
| 56 #p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4")) | |
| 57 png(filename=plot1.png, width=480, height=300) | |
| 58 print(p) | |
| 59 dev.off() | |
| 60 | |
| 61 data2 = dat[c(1, 5:8),] | |
| 62 | |
| 63 data2 = data2[,names(data2)[grepl("\\.x", names(data2))]] | |
| 64 names(data2) = gsub(".x", "", names(data2)) | |
| 65 | |
| 66 data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]] | |
| 67 | |
| 68 data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1) | |
| 69 | |
| 70 data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]] | |
| 71 data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1) | |
| 72 | |
| 73 data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0 | |
| 74 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0 | |
| 75 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0 | |
| 76 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0 | |
| 77 | |
| 78 data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),])) | |
| 79 | |
| 80 names(data2) = c("Class", "Type", "value") | |
| 81 | |
| 82 data2 = data2[order(data2$Type),] | |
| 83 | |
| 84 write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
| 85 | |
| 86 p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity", colour = "black") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") | |
| 87 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white")) | |
| 88 #p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black")) | |
| 89 png(filename=plot2.png, width=480, height=300) | |
| 90 print(p) | |
| 91 dev.off() | |
| 92 | |
| 93 data3 = dat[c(5, 6, 8, 17:20),] | |
| 94 data3 = data3[,names(data3)[grepl("\\.x", names(data3))]] | |
| 95 names(data3) = gsub(".x", "", names(data3)) | |
| 96 | |
| 97 data3[is.na(data3)] = 0 | |
| 98 #data3[is.infinite(data3)] = 0 | |
| 99 | |
| 100 data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1) | |
| 101 | |
| 102 data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1) | |
| 103 | |
| 104 data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1) | |
| 105 | |
| 106 data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0 | |
| 107 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0 | |
| 108 | |
| 109 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0 | |
| 110 data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0 | |
| 111 | |
| 112 data3["A/T",is.nan(unlist(data3["A/T",]))] = 0 | |
| 113 data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0 | |
| 114 | |
| 115 data3 = melt(t(data3[8:10,])) | |
| 116 names(data3) = c("Class", "Type", "value") | |
| 117 | |
| 118 data3 = data3[order(data3$Type),] | |
| 119 | |
| 120 write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
| 121 | |
| 122 p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) | |
| 123 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white")) | |
| 124 #p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black")) | |
| 125 png(filename=plot3.png, width=480, height=300) | |
| 126 print(p) | |
| 127 dev.off() | |
| 128 | |
| 129 | |
| 130 | |
| 131 | |
| 132 | |
| 133 | |
| 134 | |
| 135 | |
| 136 | |
| 137 | |
| 138 | |
| 139 | |
| 140 | |
| 141 | |
| 142 | |
| 143 | |
| 144 | |
| 145 | |
| 146 | |
| 147 | |
| 148 | |
| 149 | |
| 150 | |
| 151 | |
| 152 | |
| 153 | |
| 154 | |
| 155 | |
| 156 | |
| 157 | |
| 158 | |
| 159 |
