Mercurial > repos > davidvanzessen > argalaxy_tools
comparison report_clonality/RScript.r.old @ 20:9185c3dfc679 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 27 Jan 2017 03:44:18 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
19:3ef457aa5df6 | 20:9185c3dfc679 |
---|---|
1 # ---------------------- load/install packages ---------------------- | |
2 | |
3 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
4 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
5 } | |
6 library(gridExtra) | |
7 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
8 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
9 } | |
10 library(ggplot2) | |
11 if (!("plyr" %in% rownames(installed.packages()))) { | |
12 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
13 } | |
14 library(plyr) | |
15 | |
16 if (!("data.table" %in% rownames(installed.packages()))) { | |
17 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
18 } | |
19 library(data.table) | |
20 | |
21 if (!("reshape2" %in% rownames(installed.packages()))) { | |
22 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") | |
23 } | |
24 library(reshape2) | |
25 | |
26 if (!("lymphclon" %in% rownames(installed.packages()))) { | |
27 install.packages("lymphclon", repos="http://cran.xl-mirror.nl/") | |
28 } | |
29 library(lymphclon) | |
30 | |
31 # ---------------------- parameters ---------------------- | |
32 | |
33 args <- commandArgs(trailingOnly = TRUE) | |
34 | |
35 infile = args[1] #path to input file | |
36 outfile = args[2] #path to output file | |
37 outdir = args[3] #path to output folder (html/images/data) | |
38 clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering | |
39 ct = unlist(strsplit(clonaltype, ",")) | |
40 species = args[5] #human or mouse | |
41 locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD | |
42 filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no) | |
43 clonality_method = args[8] | |
44 | |
45 | |
46 # ---------------------- Data preperation ---------------------- | |
47 | |
48 print("Report Clonality - Data preperation") | |
49 | |
50 inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="", stringsAsFactors=F) | |
51 | |
52 print(paste("nrows: ", nrow(inputdata))) | |
53 | |
54 setwd(outdir) | |
55 | |
56 # remove weird rows | |
57 inputdata = inputdata[inputdata$Sample != "",] | |
58 | |
59 print(paste("nrows: ", nrow(inputdata))) | |
60 | |
61 #remove the allele from the V,D and J genes | |
62 inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene) | |
63 inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene) | |
64 inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene) | |
65 | |
66 print(paste("nrows: ", nrow(inputdata))) | |
67 | |
68 #filter uniques | |
69 inputdata.removed = inputdata[NULL,] | |
70 | |
71 print(paste("nrows: ", nrow(inputdata))) | |
72 | |
73 inputdata$clonaltype = 1:nrow(inputdata) | |
74 | |
75 #keep track of the count of sequences in samples or samples/replicates for the front page overview | |
76 input.sample.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample")]) | |
77 input.rep.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample", "Replicate")]) | |
78 | |
79 PRODF = inputdata | |
80 UNPROD = inputdata | |
81 if(filterproductive){ | |
82 if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column | |
83 #PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ] | |
84 PRODF = inputdata[inputdata$Functionality %in% c("productive (see comment)","productive"),] | |
85 | |
86 PRODF.count = data.frame(data.table(PRODF)[, list(count=.N), by=c("Sample")]) | |
87 | |
88 UNPROD = inputdata[inputdata$Functionality %in% c("unproductive (see comment)","unproductive"), ] | |
89 } else { | |
90 PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ] | |
91 UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ] | |
92 } | |
93 } | |
94 | |
95 for(i in 1:nrow(UNPROD)){ | |
96 if(!is.numeric(UNPROD[i,"CDR3.Length"])){ | |
97 UNPROD[i,"CDR3.Length"] = 0 | |
98 } | |
99 } | |
100 | |
101 prod.sample.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample")]) | |
102 prod.rep.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample", "Replicate")]) | |
103 | |
104 unprod.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample")]) | |
105 unprod.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample", "Replicate")]) | |
106 | |
107 clonalityFrame = PRODF | |
108 | |
109 #remove duplicates based on the clonaltype | |
110 if(clonaltype != "none"){ | |
111 clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples | |
112 PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
113 PRODF = PRODF[!duplicated(PRODF$clonaltype), ] | |
114 | |
115 UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
116 UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ] | |
117 | |
118 #again for clonalityFrame but with sample+replicate | |
119 clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
120 clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":")) | |
121 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ] | |
122 } | |
123 | |
124 print("SAMPLE TABLE:") | |
125 print(table(PRODF$Sample)) | |
126 | |
127 prod.unique.sample.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample")]) | |
128 prod.unique.rep.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample", "Replicate")]) | |
129 | |
130 unprod.unique.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample")]) | |
131 unprod.unique.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample", "Replicate")]) | |
132 | |
133 PRODF$freq = 1 | |
134 | |
135 if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*" | |
136 PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID) | |
137 PRODF$freq = gsub("_.*", "", PRODF$freq) | |
138 PRODF$freq = as.numeric(PRODF$freq) | |
139 if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence | |
140 PRODF$freq = 1 | |
141 } | |
142 } | |
143 | |
144 #make a names list with sample -> color | |
145 naive.colors = c('blue4', 'darkred', 'olivedrab3', 'red', 'gray74', 'darkviolet', 'lightblue1', 'gold', 'chartreuse2', 'pink', 'Paleturquoise3', 'Chocolate1', 'Yellow', 'Deeppink3', 'Mediumorchid1', 'Darkgreen', 'Blue', 'Gray36', 'Hotpink', 'Yellow4') | |
146 unique.samples = unique(PRODF$Sample) | |
147 | |
148 if(length(unique.samples) <= length(naive.colors)){ | |
149 sample.colors = naive.colors[1:length(unique.samples)] | |
150 } else { | |
151 sample.colors = rainbow(length(unique.samples)) | |
152 } | |
153 | |
154 names(sample.colors) = unique.samples | |
155 | |
156 print("Sample.colors") | |
157 print(sample.colors) | |
158 | |
159 | |
160 #write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive | |
161 write.table(PRODF, "allUnique.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
162 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) | |
163 write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T) | |
164 | |
165 #write the samples to a file | |
166 sampleFile <- file("samples.txt") | |
167 un = unique(inputdata$Sample) | |
168 un = paste(un, sep="\n") | |
169 writeLines(un, sampleFile) | |
170 close(sampleFile) | |
171 | |
172 # ---------------------- Counting the productive/unproductive and unique sequences ---------------------- | |
173 | |
174 print("Report Clonality - counting productive/unproductive/unique") | |
175 | |
176 #create the table on the overview page with the productive/unique counts per sample/replicate | |
177 #first for sample | |
178 sample.count = merge(input.sample.count, prod.sample.count, by="Sample", all.x=T) | |
179 sample.count$perc_prod = round(sample.count$Productive / sample.count$All * 100) | |
180 sample.count = merge(sample.count, prod.unique.sample.count, by="Sample", all.x=T) | |
181 sample.count$perc_prod_un = round(sample.count$Productive_unique / sample.count$All * 100) | |
182 | |
183 sample.count = merge(sample.count , unprod.sample.count, by="Sample", all.x=T) | |
184 sample.count$perc_unprod = round(sample.count$Unproductive / sample.count$All * 100) | |
185 sample.count = merge(sample.count, unprod.unique.sample.count, by="Sample", all.x=T) | |
186 sample.count$perc_unprod_un = round(sample.count$Unproductive_unique / sample.count$All * 100) | |
187 | |
188 #then sample/replicate | |
189 rep.count = merge(input.rep.count, prod.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
190 rep.count$perc_prod = round(rep.count$Productive / rep.count$All * 100) | |
191 rep.count = merge(rep.count, prod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
192 rep.count$perc_prod_un = round(rep.count$Productive_unique / rep.count$All * 100) | |
193 | |
194 rep.count = merge(rep.count, unprod.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
195 rep.count$perc_unprod = round(rep.count$Unproductive / rep.count$All * 100) | |
196 rep.count = merge(rep.count, unprod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T) | |
197 rep.count$perc_unprod_un = round(rep.count$Unproductive_unique / rep.count$All * 100) | |
198 | |
199 rep.count$Sample = paste(rep.count$Sample, rep.count$Replicate, sep="_") | |
200 rep.count = rep.count[,names(rep.count) != "Replicate"] | |
201 | |
202 count = rbind(sample.count, rep.count) | |
203 | |
204 | |
205 | |
206 write.table(x=count, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F) | |
207 | |
208 # ---------------------- V+J+CDR3 sequence count ---------------------- | |
209 | |
210 VJCDR3.count = data.frame(table(clonalityFrame$Top.V.Gene, clonalityFrame$Top.J.Gene, clonalityFrame$CDR3.Seq.DNA)) | |
211 names(VJCDR3.count) = c("Top.V.Gene", "Top.J.Gene", "CDR3.Seq.DNA", "Count") | |
212 | |
213 VJCDR3.count = VJCDR3.count[VJCDR3.count$Count > 0,] | |
214 VJCDR3.count = VJCDR3.count[order(-VJCDR3.count$Count),] | |
215 | |
216 write.table(x=VJCDR3.count, file="VJCDR3_count.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
217 | |
218 # ---------------------- Frequency calculation for V, D and J ---------------------- | |
219 | |
220 print("Report Clonality - frequency calculation V, D and J") | |
221 | |
222 PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")]) | |
223 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
224 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
225 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
226 | |
227 PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")]) | |
228 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
229 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
230 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
231 | |
232 PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")]) | |
233 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
234 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
235 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
236 | |
237 # ---------------------- Setting up the gene names for the different species/loci ---------------------- | |
238 | |
239 print("Report Clonality - getting genes for species/loci") | |
240 | |
241 Vchain = "" | |
242 Dchain = "" | |
243 Jchain = "" | |
244 | |
245 if(species == "custom"){ | |
246 print("Custom genes: ") | |
247 splt = unlist(strsplit(locus, ";")) | |
248 print(paste("V:", splt[1])) | |
249 print(paste("D:", splt[2])) | |
250 print(paste("J:", splt[3])) | |
251 | |
252 Vchain = unlist(strsplit(splt[1], ",")) | |
253 Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain)) | |
254 | |
255 Dchain = unlist(strsplit(splt[2], ",")) | |
256 if(length(Dchain) > 0){ | |
257 Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain)) | |
258 } else { | |
259 Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0)) | |
260 } | |
261 | |
262 Jchain = unlist(strsplit(splt[3], ",")) | |
263 Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain)) | |
264 | |
265 } else { | |
266 genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="") | |
267 | |
268 Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")] | |
269 colnames(Vchain) = c("v.name", "chr.orderV") | |
270 Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")] | |
271 colnames(Dchain) = c("v.name", "chr.orderD") | |
272 Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")] | |
273 colnames(Jchain) = c("v.name", "chr.orderJ") | |
274 } | |
275 useD = TRUE | |
276 if(nrow(Dchain) == 0){ | |
277 useD = FALSE | |
278 cat("No D Genes in this species/locus") | |
279 } | |
280 print(paste(nrow(Vchain), "genes in V")) | |
281 print(paste(nrow(Dchain), "genes in D")) | |
282 print(paste(nrow(Jchain), "genes in J")) | |
283 | |
284 # ---------------------- merge with the frequency count ---------------------- | |
285 | |
286 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
287 | |
288 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
289 | |
290 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
291 | |
292 # ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ---------------------- | |
293 | |
294 print("Report Clonality - V, D and J frequency plots") | |
295 | |
296 pV = ggplot(PRODFV) | |
297 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
298 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") + scale_fill_manual(values=sample.colors) | |
299 pV = pV + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
300 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
301 | |
302 png("VPlot.png",width = 1280, height = 720) | |
303 pV | |
304 dev.off(); | |
305 | |
306 if(useD){ | |
307 pD = ggplot(PRODFD) | |
308 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
309 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") + scale_fill_manual(values=sample.colors) | |
310 pD = pD + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
311 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
312 | |
313 png("DPlot.png",width = 800, height = 600) | |
314 print(pD) | |
315 dev.off(); | |
316 } | |
317 | |
318 pJ = ggplot(PRODFJ) | |
319 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
320 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") + scale_fill_manual(values=sample.colors) | |
321 pJ = pJ + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
322 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
323 | |
324 png("JPlot.png",width = 800, height = 600) | |
325 pJ | |
326 dev.off(); | |
327 | |
328 # ---------------------- Now the frequency plots of the V, D and J families ---------------------- | |
329 | |
330 print("Report Clonality - V, D and J family plots") | |
331 | |
332 VGenes = PRODF[,c("Sample", "Top.V.Gene")] | |
333 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) | |
334 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) | |
335 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
336 VGenes = merge(VGenes, TotalPerSample, by="Sample") | |
337 VGenes$Frequency = VGenes$Count * 100 / VGenes$total | |
338 VPlot = ggplot(VGenes) | |
339 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
340 ggtitle("Distribution of V gene families") + | |
341 ylab("Percentage of sequences") + | |
342 scale_fill_manual(values=sample.colors) + | |
343 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
344 png("VFPlot.png") | |
345 VPlot | |
346 dev.off(); | |
347 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
348 | |
349 if(useD){ | |
350 DGenes = PRODF[,c("Sample", "Top.D.Gene")] | |
351 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) | |
352 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) | |
353 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
354 DGenes = merge(DGenes, TotalPerSample, by="Sample") | |
355 DGenes$Frequency = DGenes$Count * 100 / DGenes$total | |
356 DPlot = ggplot(DGenes) | |
357 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
358 ggtitle("Distribution of D gene families") + | |
359 ylab("Percentage of sequences") + | |
360 scale_fill_manual(values=sample.colors) + | |
361 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
362 png("DFPlot.png") | |
363 print(DPlot) | |
364 dev.off(); | |
365 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
366 } | |
367 | |
368 # ---------------------- Plotting the cdr3 length ---------------------- | |
369 | |
370 print("Report Clonality - CDR3 length plot") | |
371 | |
372 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length")]) | |
373 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) | |
374 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") | |
375 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total | |
376 CDR3LengthPlot = ggplot(CDR3Length) | |
377 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = factor(reorder(CDR3.Length, as.numeric(CDR3.Length))), y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
378 ggtitle("Length distribution of CDR3") + | |
379 xlab("CDR3 Length") + | |
380 ylab("Percentage of sequences") + | |
381 scale_fill_manual(values=sample.colors) + | |
382 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
383 png("CDR3LengthPlot.png",width = 1280, height = 720) | |
384 CDR3LengthPlot | |
385 dev.off() | |
386 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) | |
387 | |
388 # ---------------------- Plot the heatmaps ---------------------- | |
389 | |
390 #get the reverse order for the V and D genes | |
391 revVchain = Vchain | |
392 revDchain = Dchain | |
393 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
394 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
395 | |
396 if(useD){ | |
397 print("Report Clonality - Heatmaps VD") | |
398 plotVD <- function(dat){ | |
399 if(length(dat[,1]) == 0){ | |
400 return() | |
401 } | |
402 | |
403 img = ggplot() + | |
404 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
405 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
406 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
407 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
408 xlab("D genes") + | |
409 ylab("V Genes") + | |
410 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro")) | |
411 | |
412 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
413 print(img) | |
414 dev.off() | |
415 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
416 } | |
417 | |
418 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
419 | |
420 VandDCount$l = log(VandDCount$Length) | |
421 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
422 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
423 VandDCount$relLength = VandDCount$l / VandDCount$max | |
424 check = is.nan(VandDCount$relLength) | |
425 if(any(check)){ | |
426 VandDCount[check,"relLength"] = 0 | |
427 } | |
428 | |
429 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name) | |
430 | |
431 completeVD = merge(VandDCount, cartegianProductVD, by.x=c("Top.V.Gene", "Top.D.Gene"), by.y=c("Top.V.Gene", "Top.D.Gene"), all=TRUE) | |
432 | |
433 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
434 | |
435 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
436 | |
437 fltr = is.nan(completeVD$relLength) | |
438 if(all(fltr)){ | |
439 completeVD[fltr,"relLength"] = 0 | |
440 } | |
441 | |
442 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
443 lapply(VDList, FUN=plotVD) | |
444 } | |
445 | |
446 print("Report Clonality - Heatmaps VJ") | |
447 | |
448 plotVJ <- function(dat){ | |
449 if(length(dat[,1]) == 0){ | |
450 return() | |
451 } | |
452 cat(paste(unique(dat[3])[1,1])) | |
453 img = ggplot() + | |
454 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
455 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
456 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
457 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
458 xlab("J genes") + | |
459 ylab("V Genes") + | |
460 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro")) | |
461 | |
462 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
463 print(img) | |
464 dev.off() | |
465 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
466 } | |
467 | |
468 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
469 | |
470 VandJCount$l = log(VandJCount$Length) | |
471 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
472 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
473 VandJCount$relLength = VandJCount$l / VandJCount$max | |
474 | |
475 check = is.nan(VandJCount$relLength) | |
476 if(any(check)){ | |
477 VandJCount[check,"relLength"] = 0 | |
478 } | |
479 | |
480 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name) | |
481 | |
482 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
483 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
484 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
485 | |
486 fltr = is.nan(completeVJ$relLength) | |
487 if(any(fltr)){ | |
488 completeVJ[fltr,"relLength"] = 1 | |
489 } | |
490 | |
491 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
492 lapply(VJList, FUN=plotVJ) | |
493 | |
494 | |
495 | |
496 if(useD){ | |
497 print("Report Clonality - Heatmaps DJ") | |
498 plotDJ <- function(dat){ | |
499 if(length(dat[,1]) == 0){ | |
500 return() | |
501 } | |
502 img = ggplot() + | |
503 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
504 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
505 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
506 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
507 xlab("J genes") + | |
508 ylab("D Genes") + | |
509 theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro")) | |
510 | |
511 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
512 print(img) | |
513 dev.off() | |
514 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
515 } | |
516 | |
517 | |
518 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
519 | |
520 DandJCount$l = log(DandJCount$Length) | |
521 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
522 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
523 DandJCount$relLength = DandJCount$l / DandJCount$max | |
524 | |
525 check = is.nan(DandJCount$relLength) | |
526 if(any(check)){ | |
527 DandJCount[check,"relLength"] = 0 | |
528 } | |
529 | |
530 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name) | |
531 | |
532 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
533 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
534 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
535 | |
536 fltr = is.nan(completeDJ$relLength) | |
537 if(any(fltr)){ | |
538 completeDJ[fltr, "relLength"] = 1 | |
539 } | |
540 | |
541 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
542 lapply(DJList, FUN=plotDJ) | |
543 } | |
544 | |
545 | |
546 # ---------------------- output tables for the circos plots ---------------------- | |
547 | |
548 print("Report Clonality - Circos data") | |
549 | |
550 for(smpl in unique(PRODF$Sample)){ | |
551 PRODF.sample = PRODF[PRODF$Sample == smpl,] | |
552 | |
553 fltr = PRODF.sample$Top.V.Gene == "" | |
554 if(any(fltr, na.rm=T)){ | |
555 PRODF.sample[fltr, "Top.V.Gene"] = "NA" | |
556 } | |
557 | |
558 fltr = PRODF.sample$Top.D.Gene == "" | |
559 if(any(fltr, na.rm=T)){ | |
560 PRODF.sample[fltr, "Top.D.Gene"] = "NA" | |
561 } | |
562 | |
563 fltr = PRODF.sample$Top.J.Gene == "" | |
564 if(any(fltr, na.rm=T)){ | |
565 PRODF.sample[fltr, "Top.J.Gene"] = "NA" | |
566 } | |
567 | |
568 v.d = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.D.Gene) | |
569 v.j = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.J.Gene) | |
570 d.j = table(PRODF.sample$Top.D.Gene, PRODF.sample$Top.J.Gene) | |
571 | |
572 write.table(v.d, file=paste(smpl, "_VD_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
573 write.table(v.j, file=paste(smpl, "_VJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
574 write.table(d.j, file=paste(smpl, "_DJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
575 } | |
576 | |
577 # ---------------------- calculating the clonality score ---------------------- | |
578 | |
579 if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available | |
580 { | |
581 print("Report Clonality - Clonality") | |
582 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) | |
583 if(clonality_method == "boyd"){ | |
584 samples = split(clonalityFrame, clonalityFrame$Sample, drop=T) | |
585 | |
586 for (sample in samples){ | |
587 res = data.frame(paste=character(0)) | |
588 sample_id = unique(sample$Sample)[[1]] | |
589 for(replicate in unique(sample$Replicate)){ | |
590 tmp = sample[sample$Replicate == replicate,] | |
591 clone_table = data.frame(table(tmp$clonaltype)) | |
592 clone_col_name = paste("V", replicate, sep="") | |
593 colnames(clone_table) = c("paste", clone_col_name) | |
594 res = merge(res, clone_table, by="paste", all=T) | |
595 } | |
596 | |
597 res[is.na(res)] = 0 | |
598 infer.result = infer.clonality(as.matrix(res[,2:ncol(res)])) | |
599 | |
600 #print(infer.result) | |
601 | |
602 write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F) | |
603 | |
604 res$type = rowSums(res[,2:ncol(res)]) | |
605 | |
606 coincidence.table = data.frame(table(res$type)) | |
607 colnames(coincidence.table) = c("Coincidence Type", "Raw Coincidence Freq") | |
608 write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
609 } | |
610 } else { | |
611 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")]) | |
612 | |
613 #write files for every coincidence group of >1 | |
614 samples = unique(clonalFreq$Sample) | |
615 for(sample in samples){ | |
616 clonalFreqSample = clonalFreq[clonalFreq$Sample == sample,] | |
617 if(max(clonalFreqSample$Type) > 1){ | |
618 for(i in 2:max(clonalFreqSample$Type)){ | |
619 clonalFreqSampleType = clonalFreqSample[clonalFreqSample$Type == i,] | |
620 clonalityFrame.sub = clonalityFrame[clonalityFrame$clonaltype %in% clonalFreqSampleType$clonaltype,] | |
621 clonalityFrame.sub = clonalityFrame.sub[order(clonalityFrame.sub$clonaltype),] | |
622 write.table(clonalityFrame.sub, file=paste("coincidences_", sample, "_", i, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
623 } | |
624 } | |
625 } | |
626 | |
627 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
628 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
629 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
630 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
631 | |
632 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
633 tcct = textConnection(ct) | |
634 CT = read.table(tcct, sep="\t", header=TRUE) | |
635 close(tcct) | |
636 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
637 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
638 | |
639 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")]) | |
640 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
641 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | |
642 ReplicateReads$Reads = as.numeric(ReplicateReads$Reads) | |
643 ReplicateReads$squared = as.numeric(ReplicateReads$Reads * ReplicateReads$Reads) | |
644 | |
645 ReplicatePrint <- function(dat){ | |
646 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
647 } | |
648 | |
649 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
650 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
651 | |
652 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")]) | |
653 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
654 | |
655 ReplicateSumPrint <- function(dat){ | |
656 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
657 } | |
658 | |
659 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
660 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
661 | |
662 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
663 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
664 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | |
665 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
666 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
667 | |
668 ClonalityScorePrint <- function(dat){ | |
669 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
670 } | |
671 | |
672 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
673 clonalityScore = unique(clonalityScore) | |
674 | |
675 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
676 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
677 | |
678 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
679 | |
680 | |
681 | |
682 ClonalityOverviewPrint <- function(dat){ | |
683 dat = dat[order(dat[,2]),] | |
684 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
685 } | |
686 | |
687 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
688 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
689 } | |
690 } | |
691 | |
692 bak = PRODF | |
693 | |
694 imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb") | |
695 if(all(imgtcolumns %in% colnames(inputdata))) | |
696 { | |
697 print("found IMGT columns, running junction analysis") | |
698 | |
699 if(locus %in% c("IGK","IGL", "TRA", "TRG")){ | |
700 print("VJ recombination, no filtering on absent D") | |
701 } else { | |
702 print("VDJ recombination, using N column for junction analysis") | |
703 fltr = nchar(PRODF$Top.D.Gene) < 4 | |
704 print(paste("Removing", sum(fltr), "sequences without a identified D")) | |
705 PRODF = PRODF[!fltr,] | |
706 } | |
707 | |
708 | |
709 #ensure certain columns are in the data (files generated with older versions of IMGT Loader) | |
710 col.checks = c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb") | |
711 for(col.check in col.checks){ | |
712 if(!(col.check %in% names(PRODF))){ | |
713 print(paste(col.check, "not found adding new column")) | |
714 if(nrow(PRODF) > 0){ #because R is anoying... | |
715 PRODF[,col.check] = 0 | |
716 } else { | |
717 PRODF = cbind(PRODF, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0))) | |
718 } | |
719 if(nrow(UNPROD) > 0){ | |
720 UNPROD[,col.check] = 0 | |
721 } else { | |
722 UNPROD = cbind(UNPROD, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0))) | |
723 } | |
724 } | |
725 } | |
726 | |
727 num_median = function(x, na.rm=T) { as.numeric(median(x, na.rm=na.rm)) } | |
728 | |
729 newData = data.frame(data.table(PRODF)[,list(unique=.N, | |
730 VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
731 P1=mean(.SD$P3V.nt.nb, na.rm=T), | |
732 N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
733 P2=mean(.SD$P5D.nt.nb, na.rm=T), | |
734 DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
735 DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
736 P3=mean(.SD$P3D.nt.nb, na.rm=T), | |
737 N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
738 P4=mean(.SD$P5J.nt.nb, na.rm=T), | |
739 DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
740 Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
741 Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
742 Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
743 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
744 by=c("Sample")]) | |
745 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
746 write.table(newData, "junctionAnalysisProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
747 | |
748 newData = data.frame(data.table(PRODF)[,list(unique=.N, | |
749 VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
750 P1=num_median(.SD$P3V.nt.nb, na.rm=T), | |
751 N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
752 P2=num_median(.SD$P5D.nt.nb, na.rm=T), | |
753 DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
754 DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
755 P3=num_median(.SD$P3D.nt.nb, na.rm=T), | |
756 N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
757 P4=num_median(.SD$P5J.nt.nb, na.rm=T), | |
758 DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
759 Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
760 Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
761 Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
762 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
763 by=c("Sample")]) | |
764 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
765 write.table(newData, "junctionAnalysisProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
766 | |
767 newData = data.frame(data.table(UNPROD)[,list(unique=.N, | |
768 VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
769 P1=mean(.SD$P3V.nt.nb, na.rm=T), | |
770 N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
771 P2=mean(.SD$P5D.nt.nb, na.rm=T), | |
772 DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
773 DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
774 P3=mean(.SD$P3D.nt.nb, na.rm=T), | |
775 N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
776 P4=mean(.SD$P5J.nt.nb, na.rm=T), | |
777 DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
778 Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
779 Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
780 Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
781 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
782 by=c("Sample")]) | |
783 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
784 write.table(newData, "junctionAnalysisUnProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
785 | |
786 newData = data.frame(data.table(UNPROD)[,list(unique=.N, | |
787 VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
788 P1=num_median(.SD$P3V.nt.nb, na.rm=T), | |
789 N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)), | |
790 P2=num_median(.SD$P5D.nt.nb, na.rm=T), | |
791 DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
792 DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
793 P3=num_median(.SD$P3D.nt.nb, na.rm=T), | |
794 N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
795 P4=num_median(.SD$P5J.nt.nb, na.rm=T), | |
796 DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
797 Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)), | |
798 Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)), | |
799 Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)), | |
800 Median.CDR3.l=as.double(median(.SD$CDR3.Length))), | |
801 by=c("Sample")]) | |
802 | |
803 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
804 write.table(newData, "junctionAnalysisUnProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
805 } | |
806 | |
807 PRODF = bak | |
808 | |
809 | |
810 # ---------------------- D reading frame ---------------------- | |
811 | |
812 D.REGION.reading.frame = PRODF[,c("Sample", "D.REGION.reading.frame")] | |
813 | |
814 chck = is.na(D.REGION.reading.frame$D.REGION.reading.frame) | |
815 if(any(chck)){ | |
816 D.REGION.reading.frame[chck,"D.REGION.reading.frame"] = "No D" | |
817 } | |
818 | |
819 D.REGION.reading.frame = data.frame(data.table(D.REGION.reading.frame)[, list(Freq=.N), by=c("Sample", "D.REGION.reading.frame")]) | |
820 | |
821 write.table(D.REGION.reading.frame, "DReadingFrame.csv" , sep="\t",quote=F,row.names=F,col.names=T) | |
822 | |
823 D.REGION.reading.frame = ggplot(D.REGION.reading.frame) | |
824 D.REGION.reading.frame = D.REGION.reading.frame + geom_bar(aes( x = D.REGION.reading.frame, y = Freq, fill=Sample), stat='identity', position='dodge' ) + ggtitle("D reading frame") + xlab("Frequency") + ylab("Frame") | |
825 D.REGION.reading.frame = D.REGION.reading.frame + scale_fill_manual(values=sample.colors) | |
826 D.REGION.reading.frame = D.REGION.reading.frame + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
827 | |
828 png("DReadingFrame.png") | |
829 D.REGION.reading.frame | |
830 dev.off() | |
831 | |
832 | |
833 | |
834 | |
835 # ---------------------- AA composition in CDR3 ---------------------- | |
836 | |
837 AACDR3 = PRODF[,c("Sample", "CDR3.Seq")] | |
838 | |
839 TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample]) | |
840 | |
841 AAfreq = list() | |
842 | |
843 for(i in 1:nrow(TotalPerSample)){ | |
844 sample = TotalPerSample$Sample[i] | |
845 AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), "")))) | |
846 AAfreq[[i]]$Sample = sample | |
847 } | |
848 | |
849 AAfreq = ldply(AAfreq, data.frame) | |
850 AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T) | |
851 AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100) | |
852 | |
853 | |
854 AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI") | |
855 AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE) | |
856 | |
857 AAfreq = AAfreq[!is.na(AAfreq$order.aa),] | |
858 | |
859 AAfreqplot = ggplot(AAfreq) | |
860 AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' ) | |
861 AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2) | |
862 AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2) | |
863 AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2) | |
864 AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2) | |
865 AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage") + scale_fill_manual(values=sample.colors) | |
866 AAfreqplot = AAfreqplot + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank()) | |
867 | |
868 png("AAComposition.png",width = 1280, height = 720) | |
869 AAfreqplot | |
870 dev.off() | |
871 write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T) | |
872 | |
873 # ---------------------- AA median CDR3 length ---------------------- | |
874 | |
875 median.aa.l = data.frame(data.table(PRODF)[, list(median=as.double(median(.SD$CDR3.Length))), by=c("Sample")]) | |
876 write.table(median.aa.l, "AAMedianBySample.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
877 |