Mercurial > repos > davidvanzessen > argalaxy_tools
diff change_o/DefineClones.py @ 4:5ffd52fc35c4 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 12 Dec 2016 05:22:37 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/change_o/DefineClones.py Mon Dec 12 05:22:37 2016 -0500 @@ -0,0 +1,1052 @@ +#!/usr/bin/env python3 +""" +Assign Ig sequences into clones +""" +# Info +__author__ = 'Namita Gupta, Jason Anthony Vander Heiden, Gur Yaari, Mohamed Uduman' +from changeo import __version__, __date__ + +# Imports +import os +import re +import sys +import numpy as np +from argparse import ArgumentParser +from collections import OrderedDict +from itertools import chain +from textwrap import dedent +from time import time +from Bio import pairwise2 +from Bio.Seq import translate + +# Presto and changeo imports +from presto.Defaults import default_out_args +from presto.IO import getFileType, getOutputHandle, printLog, printProgress +from presto.Multiprocessing import manageProcesses +from presto.Sequence import getDNAScoreDict +from changeo.Commandline import CommonHelpFormatter, getCommonArgParser, parseCommonArgs +from changeo.Distance import getDNADistMatrix, getAADistMatrix, \ + hs1f_model, m1n_model, hs5f_model, \ + calcDistances, formClusters +from changeo.IO import getDbWriter, readDbFile, countDbFile +from changeo.Multiprocessing import DbData, DbResult + +# Defaults +default_translate = False +default_distance = 0.0 +default_bygroup_model = 'hs1f' +default_hclust_model = 'chen2010' +default_seq_field = 'JUNCTION' +default_norm = 'len' +default_sym = 'avg' +default_linkage = 'single' + +# TODO: should be in Distance, but need to be after function definitions +# Amino acid Hamming distance +aa_model = getAADistMatrix(mask_dist=1, gap_dist=0) + +# DNA Hamming distance +ham_model = getDNADistMatrix(mask_dist=0, gap_dist=0) + + +# TODO: this function is an abstraction to facilitate later cleanup +def getModelMatrix(model): + """ + Simple wrapper to get distance matrix from model name + + Arguments: + model = model name + + Return: + a pandas.DataFrame containing the character distance matrix + """ + if model == 'aa': + return(aa_model) + elif model == 'ham': + return(ham_model) + elif model == 'm1n': + return(m1n_model) + elif model == 'hs1f': + return(hs1f_model) + elif model == 'hs5f': + return(hs5f_model) + else: + sys.stderr.write('Unrecognized distance model: %s.\n' % model) + + +def indexJunctions(db_iter, fields=None, mode='gene', action='first'): + """ + Identifies preclonal groups by V, J and junction length + + Arguments: + db_iter = an iterator of IgRecords defined by readDbFile + fields = additional annotation fields to use to group preclones; + if None use only V, J and junction length + mode = specificity of alignment call to use for assigning preclones; + one of ('allele', 'gene') + action = how to handle multiple value fields when assigning preclones; + one of ('first', 'set') + + Returns: + a dictionary of {(V, J, junction length):[IgRecords]} + """ + # Define functions for grouping keys + if mode == 'allele' and fields is None: + def _get_key(rec, act): + return (rec.getVAllele(act), rec.getJAllele(act), + None if rec.junction is None else len(rec.junction)) + elif mode == 'gene' and fields is None: + def _get_key(rec, act): + return (rec.getVGene(act), rec.getJGene(act), + None if rec.junction is None else len(rec.junction)) + elif mode == 'allele' and fields is not None: + def _get_key(rec, act): + vdj = [rec.getVAllele(act), rec.getJAllele(act), + None if rec.junction is None else len(rec.junction)] + ann = [rec.toDict().get(k, None) for k in fields] + return tuple(chain(vdj, ann)) + elif mode == 'gene' and fields is not None: + def _get_key(rec, act): + vdj = [rec.getVGene(act), rec.getJGene(act), + None if rec.junction is None else len(rec.junction)] + ann = [rec.toDict().get(k, None) for k in fields] + return tuple(chain(vdj, ann)) + + start_time = time() + clone_index = {} + rec_count = 0 + for rec in db_iter: + key = _get_key(rec, action) + + # Print progress + if rec_count == 0: + print('PROGRESS> Grouping sequences') + + printProgress(rec_count, step=1000, start_time=start_time) + rec_count += 1 + + # Assigned passed preclone records to key and failed to index None + if all([k is not None and k != '' for k in key]): + #print key + # TODO: Has much slow. Should have less slow. + if action == 'set': + + f_range = list(range(2, 3 + (len(fields) if fields else 0))) + vdj_range = list(range(2)) + + # Check for any keys that have matching columns and junction length and overlapping genes/alleles + to_remove = [] + if len(clone_index) > (1 if None in clone_index else 0) and key not in clone_index: + key = list(key) + for k in clone_index: + if k is not None and all([key[i] == k[i] for i in f_range]): + if all([not set(key[i]).isdisjoint(set(k[i])) for i in vdj_range]): + for i in vdj_range: key[i] = tuple(set(key[i]).union(set(k[i]))) + to_remove.append(k) + + # Remove original keys, replace with union of all genes/alleles and append values to new key + val = [rec] + val += list(chain(*(clone_index.pop(k) for k in to_remove))) + clone_index[tuple(key)] = clone_index.get(tuple(key),[]) + val + + elif action == 'first': + clone_index.setdefault(key, []).append(rec) + else: + clone_index.setdefault(None, []).append(rec) + + printProgress(rec_count, step=1000, start_time=start_time, end=True) + + return clone_index + + +def distanceClones(records, model=default_bygroup_model, distance=default_distance, + dist_mat=None, norm=default_norm, sym=default_sym, + linkage=default_linkage, seq_field=default_seq_field): + """ + Separates a set of IgRecords into clones + + Arguments: + records = an iterator of IgRecords + model = substitution model used to calculate distance + distance = the distance threshold to assign clonal groups + dist_mat = pandas DataFrame of pairwise nucleotide or amino acid distances + norm = normalization method + sym = symmetry method + linkage = type of linkage + seq_field = sequence field used to calculate distance between records + + Returns: + a dictionary of lists defining {clone number: [IgRecords clonal group]} + """ + # Get distance matrix if not provided + if dist_mat is None: dist_mat = getModelMatrix(model) + + # Determine length of n-mers + if model in ['hs1f', 'm1n', 'aa', 'ham']: + nmer_len = 1 + elif model in ['hs5f']: + nmer_len = 5 + else: + sys.stderr.write('Unrecognized distance model: %s.\n' % model) + + # Define unique junction mapping + seq_map = {} + for ig in records: + seq = ig.getSeqField(seq_field) + # Check if sequence length is 0 + if len(seq) == 0: + return None + + seq = re.sub('[\.-]','N', str(seq)) + if model == 'aa': seq = translate(seq) + + seq_map.setdefault(seq, []).append(ig) + + # Process records + if len(seq_map) == 1: + return {1:records} + + # Define sequences + seqs = list(seq_map.keys()) + + # Calculate pairwise distance matrix + dists = calcDistances(seqs, nmer_len, dist_mat, norm, sym) + + # Perform hierarchical clustering + clusters = formClusters(dists, linkage, distance) + + # Turn clusters into clone dictionary + clone_dict = {} + for i, c in enumerate(clusters): + clone_dict.setdefault(c, []).extend(seq_map[seqs[i]]) + + return clone_dict + + +def distChen2010(records): + """ + Calculate pairwise distances as defined in Chen 2010 + + Arguments: + records = list of IgRecords where first is query to be compared to others in list + + Returns: + list of distances + """ + # Pull out query sequence and V/J information + query = records.popitem(last=False) + query_cdr3 = query.junction[3:-3] + query_v_allele = query.getVAllele() + query_v_gene = query.getVGene() + query_v_family = query.getVFamily() + query_j_allele = query.getJAllele() + query_j_gene = query.getJGene() + # Create alignment scoring dictionary + score_dict = getDNAScoreDict() + + scores = [0]*len(records) + for i in range(len(records)): + ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3], + score_dict, -1, -1, one_alignment_only=True) + # Check V similarity + if records[i].getVAllele() == query_v_allele: ld += 0 + elif records[i].getVGene() == query_v_gene: ld += 1 + elif records[i].getVFamily() == query_v_family: ld += 3 + else: ld += 5 + # Check J similarity + if records[i].getJAllele() == query_j_allele: ld += 0 + elif records[i].getJGene() == query_j_gene: ld += 1 + else: ld += 3 + # Divide by length + scores[i] = ld/max(len(records[i].junction[3:-3]), query_cdr3) + + return scores + + +def distAdemokun2011(records): + """ + Calculate pairwise distances as defined in Ademokun 2011 + + Arguments: + records = list of IgRecords where first is query to be compared to others in list + + Returns: + list of distances + """ + # Pull out query sequence and V family information + query = records.popitem(last=False) + query_cdr3 = query.junction[3:-3] + query_v_family = query.getVFamily() + # Create alignment scoring dictionary + score_dict = getDNAScoreDict() + + scores = [0]*len(records) + for i in range(len(records)): + + if abs(len(query_cdr3) - len(records[i].junction[3:-3])) > 10: + scores[i] = 1 + elif query_v_family != records[i].getVFamily(): + scores[i] = 1 + else: + ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3], + score_dict, -1, -1, one_alignment_only=True) + scores[i] = ld/min(len(records[i].junction[3:-3]), query_cdr3) + + return scores + + +def hierClust(dist_mat, method='chen2010'): + """ + Calculate hierarchical clustering + + Arguments: + dist_mat = square-formed distance matrix of pairwise CDR3 comparisons + + Returns: + list of cluster ids + """ + if method == 'chen2010': + clusters = formClusters(dist_mat, 'average', 0.32) + elif method == 'ademokun2011': + clusters = formClusters(dist_mat, 'complete', 0.25) + else: clusters = np.ones(dist_mat.shape[0]) + + return clusters + +# TODO: Merge duplicate feed, process and collect functions. +def feedQueue(alive, data_queue, db_file, group_func, group_args={}): + """ + Feeds the data queue with Ig records + + Arguments: + alive = a multiprocessing.Value boolean controlling whether processing continues + if False exit process + data_queue = a multiprocessing.Queue to hold data for processing + db_file = the Ig record database file + group_func = the function to use for assigning preclones + group_args = a dictionary of arguments to pass to group_func + + Returns: + None + """ + # Open input file and perform grouping + try: + # Iterate over Ig records and assign groups + db_iter = readDbFile(db_file) + clone_dict = group_func(db_iter, **group_args) + except: + #sys.stderr.write('Exception in feeder grouping step\n') + alive.value = False + raise + + # Add groups to data queue + try: + #print 'START FEED', alive.value + # Iterate over groups and feed data queue + clone_iter = iter(clone_dict.items()) + while alive.value: + # Get data from queue + if data_queue.full(): continue + else: data = next(clone_iter, None) + # Exit upon reaching end of iterator + if data is None: break + #print "FEED", alive.value, k + + # Feed queue + data_queue.put(DbData(*data)) + else: + sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ + % os.getpid()) + return None + except: + #sys.stderr.write('Exception in feeder queue feeding step\n') + alive.value = False + raise + + return None + + +def feedQueueClust(alive, data_queue, db_file, group_func=None, group_args={}): + """ + Feeds the data queue with Ig records + + Arguments: + alive = a multiprocessing.Value boolean controlling whether processing continues + if False exit process + data_queue = a multiprocessing.Queue to hold data for processing + db_file = the Ig record database file + + Returns: + None + """ + # Open input file and perform grouping + try: + # Iterate over Ig records and order by junction length + records = {} + db_iter = readDbFile(db_file) + for rec in db_iter: + records[rec.id] = rec + records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length)) + dist_dict = {} + for __ in range(len(records)): + k,v = records.popitem(last=False) + dist_dict[k] = [v].append(list(records.values())) + except: + #sys.stderr.write('Exception in feeder grouping step\n') + alive.value = False + raise + + # Add groups to data queue + try: + # print 'START FEED', alive.value + # Iterate over groups and feed data queue + dist_iter = iter(dist_dict.items()) + while alive.value: + # Get data from queue + if data_queue.full(): continue + else: data = next(dist_iter, None) + # Exit upon reaching end of iterator + if data is None: break + #print "FEED", alive.value, k + + # Feed queue + data_queue.put(DbData(*data)) + else: + sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ + % os.getpid()) + return None + except: + #sys.stderr.write('Exception in feeder queue feeding step\n') + alive.value = False + raise + + return None + + +def processQueue(alive, data_queue, result_queue, clone_func, clone_args): + """ + Pulls from data queue, performs calculations, and feeds results queue + + Arguments: + alive = a multiprocessing.Value boolean controlling whether processing continues + if False exit process + data_queue = a multiprocessing.Queue holding data to process + result_queue = a multiprocessing.Queue to hold processed results + clone_func = the function to call for clonal assignment + clone_args = a dictionary of arguments to pass to clone_func + + Returns: + None + """ + try: + # Iterator over data queue until sentinel object reached + while alive.value: + # Get data from queue + if data_queue.empty(): continue + else: data = data_queue.get() + # Exit upon reaching sentinel + if data is None: break + + # Define result object for iteration and get data records + records = data.data + result = DbResult(data.id, records) + + # Check for invalid data (due to failed indexing) and add failed result + if not data: + result_queue.put(result) + continue + + # Add V(D)J to log + result.log['ID'] = ','.join([str(x) for x in data.id]) + result.log['VALLELE'] = ','.join(set([(r.getVAllele() or '') for r in records])) + result.log['DALLELE'] = ','.join(set([(r.getDAllele() or '') for r in records])) + result.log['JALLELE'] = ','.join(set([(r.getJAllele() or '') for r in records])) + result.log['JUNCLEN'] = ','.join(set([(str(len(r.junction)) or '0') for r in records])) + result.log['SEQUENCES'] = len(records) + + # Checking for preclone failure and assign clones + clones = clone_func(records, **clone_args) if data else None + + # import cProfile + # prof = cProfile.Profile() + # clones = prof.runcall(clone_func, records, **clone_args) + # prof.dump_stats('worker-%d.prof' % os.getpid()) + + if clones is not None: + result.results = clones + result.valid = True + result.log['CLONES'] = len(clones) + else: + result.log['CLONES'] = 0 + + # Feed results to result queue + result_queue.put(result) + else: + sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ + % os.getpid()) + return None + except: + #sys.stderr.write('Exception in worker\n') + alive.value = False + raise + + return None + + +def processQueueClust(alive, data_queue, result_queue, clone_func, clone_args): + """ + Pulls from data queue, performs calculations, and feeds results queue + + Arguments: + alive = a multiprocessing.Value boolean controlling whether processing continues + if False exit process + data_queue = a multiprocessing.Queue holding data to process + result_queue = a multiprocessing.Queue to hold processed results + clone_func = the function to call for calculating pairwise distances between sequences + clone_args = a dictionary of arguments to pass to clone_func + + Returns: + None + """ + + try: + # print 'START WORK', alive.value + # Iterator over data queue until sentinel object reached + while alive.value: + # Get data from queue + if data_queue.empty(): continue + else: data = data_queue.get() + # Exit upon reaching sentinel + if data is None: break + # print "WORK", alive.value, data['id'] + + # Define result object for iteration and get data records + records = data.data + result = DbResult(data.id, records) + + # Create row of distance matrix and check for error + dist_row = clone_func(records, **clone_args) if data else None + if dist_row is not None: + result.results = dist_row + result.valid = True + + # Feed results to result queue + result_queue.put(result) + else: + sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ + % os.getpid()) + return None + except: + #sys.stderr.write('Exception in worker\n') + alive.value = False + raise + + return None + + +def collectQueue(alive, result_queue, collect_queue, db_file, out_args, cluster_func=None, cluster_args={}): + """ + Assembles results from a queue of individual sequence results and manages log/file I/O + + Arguments: + alive = a multiprocessing.Value boolean controlling whether processing continues + if False exit process + result_queue = a multiprocessing.Queue holding processQueue results + collect_queue = a multiprocessing.Queue to store collector return values + db_file = the input database file name + out_args = common output argument dictionary from parseCommonArgs + cluster_func = the function to call for carrying out clustering on distance matrix + cluster_args = a dictionary of arguments to pass to cluster_func + + Returns: + None + (adds 'log' and 'out_files' to collect_dict) + """ + # Open output files + try: + # Count records and define output format + out_type = getFileType(db_file) if out_args['out_type'] is None \ + else out_args['out_type'] + result_count = countDbFile(db_file) + + # Defined successful output handle + pass_handle = getOutputHandle(db_file, + out_label='clone-pass', + out_dir=out_args['out_dir'], + out_name=out_args['out_name'], + out_type=out_type) + pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE') + + # Defined failed alignment output handle + if out_args['failed']: + fail_handle = getOutputHandle(db_file, + out_label='clone-fail', + out_dir=out_args['out_dir'], + out_name=out_args['out_name'], + out_type=out_type) + fail_writer = getDbWriter(fail_handle, db_file) + else: + fail_handle = None + fail_writer = None + + # Define log handle + if out_args['log_file'] is None: + log_handle = None + else: + log_handle = open(out_args['log_file'], 'w') + except: + #sys.stderr.write('Exception in collector file opening step\n') + alive.value = False + raise + + # Get results from queue and write to files + try: + #print 'START COLLECT', alive.value + # Iterator over results queue until sentinel object reached + start_time = time() + rec_count = clone_count = pass_count = fail_count = 0 + while alive.value: + # Get result from queue + if result_queue.empty(): continue + else: result = result_queue.get() + # Exit upon reaching sentinel + if result is None: break + #print "COLLECT", alive.value, result['id'] + + # Print progress for previous iteration and update record count + if rec_count == 0: + print('PROGRESS> Assigning clones') + printProgress(rec_count, result_count, 0.05, start_time) + rec_count += len(result.data) + + # Write passed and failed records + if result: + for clone in result.results.values(): + clone_count += 1 + for i, rec in enumerate(clone): + rec.annotations['CLONE'] = clone_count + pass_writer.writerow(rec.toDict()) + pass_count += 1 + result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction) + + else: + for i, rec in enumerate(result.data): + if fail_writer is not None: fail_writer.writerow(rec.toDict()) + fail_count += 1 + result.log['CLONE0-%i' % (i + 1)] = str(rec.junction) + + # Write log + printLog(result.log, handle=log_handle) + else: + sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ + % os.getpid()) + return None + + # Print total counts + printProgress(rec_count, result_count, 0.05, start_time) + + # Close file handles + pass_handle.close() + if fail_handle is not None: fail_handle.close() + if log_handle is not None: log_handle.close() + + # Update return list + log = OrderedDict() + log['OUTPUT'] = os.path.basename(pass_handle.name) + log['CLONES'] = clone_count + log['RECORDS'] = rec_count + log['PASS'] = pass_count + log['FAIL'] = fail_count + collect_dict = {'log':log, 'out_files': [pass_handle.name]} + collect_queue.put(collect_dict) + except: + #sys.stderr.write('Exception in collector result processing step\n') + alive.value = False + raise + + return None + + +def collectQueueClust(alive, result_queue, collect_queue, db_file, out_args, cluster_func, cluster_args): + """ + Assembles results from a queue of individual sequence results and manages log/file I/O + + Arguments: + alive = a multiprocessing.Value boolean controlling whether processing continues + if False exit process + result_queue = a multiprocessing.Queue holding processQueue results + collect_queue = a multiprocessing.Queue to store collector return values + db_file = the input database file name + out_args = common output argument dictionary from parseCommonArgs + cluster_func = the function to call for carrying out clustering on distance matrix + cluster_args = a dictionary of arguments to pass to cluster_func + + Returns: + None + (adds 'log' and 'out_files' to collect_dict) + """ + # Open output files + try: + + # Iterate over Ig records to count and order by junction length + result_count = 0 + records = {} + # print 'Reading file...' + db_iter = readDbFile(db_file) + for rec in db_iter: + records[rec.id] = rec + result_count += 1 + records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length)) + + # Define empty matrix to store assembled results + dist_mat = np.zeros((result_count,result_count)) + + # Count records and define output format + out_type = getFileType(db_file) if out_args['out_type'] is None \ + else out_args['out_type'] + + # Defined successful output handle + pass_handle = getOutputHandle(db_file, + out_label='clone-pass', + out_dir=out_args['out_dir'], + out_name=out_args['out_name'], + out_type=out_type) + pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE') + + # Defined failed cloning output handle + if out_args['failed']: + fail_handle = getOutputHandle(db_file, + out_label='clone-fail', + out_dir=out_args['out_dir'], + out_name=out_args['out_name'], + out_type=out_type) + fail_writer = getDbWriter(fail_handle, db_file) + else: + fail_handle = None + fail_writer = None + + # Open log file + if out_args['log_file'] is None: + log_handle = None + else: + log_handle = open(out_args['log_file'], 'w') + except: + alive.value = False + raise + + try: + # Iterator over results queue until sentinel object reached + start_time = time() + row_count = rec_count = 0 + while alive.value: + # Get result from queue + if result_queue.empty(): continue + else: result = result_queue.get() + # Exit upon reaching sentinel + if result is None: break + + # Print progress for previous iteration + if row_count == 0: + print('PROGRESS> Assigning clones') + printProgress(row_count, result_count, 0.05, start_time) + + # Update counts for iteration + row_count += 1 + rec_count += len(result) + + # Add result row to distance matrix + if result: + dist_mat[list(range(result_count-len(result),result_count)),result_count-len(result)] = result.results + + else: + sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ + % os.getpid()) + return None + + # Calculate linkage and carry out clustering + # print dist_mat + clusters = cluster_func(dist_mat, **cluster_args) if dist_mat is not None else None + clones = {} + # print clusters + for i, c in enumerate(clusters): + clones.setdefault(c, []).append(records[list(records.keys())[i]]) + + # Write passed and failed records + clone_count = pass_count = fail_count = 0 + if clones: + for clone in clones.values(): + clone_count += 1 + for i, rec in enumerate(clone): + rec.annotations['CLONE'] = clone_count + pass_writer.writerow(rec.toDict()) + pass_count += 1 + #result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction) + + else: + for i, rec in enumerate(result.data): + fail_writer.writerow(rec.toDict()) + fail_count += 1 + #result.log['CLONE0-%i' % (i + 1)] = str(rec.junction) + + # Print final progress + printProgress(row_count, result_count, 0.05, start_time) + + # Close file handles + pass_handle.close() + if fail_handle is not None: fail_handle.close() + if log_handle is not None: log_handle.close() + + # Update return list + log = OrderedDict() + log['OUTPUT'] = os.path.basename(pass_handle.name) + log['CLONES'] = clone_count + log['RECORDS'] = rec_count + log['PASS'] = pass_count + log['FAIL'] = fail_count + collect_dict = {'log':log, 'out_files': [pass_handle.name]} + collect_queue.put(collect_dict) + except: + alive.value = False + raise + + return None + + +def defineClones(db_file, feed_func, work_func, collect_func, clone_func, cluster_func=None, + group_func=None, group_args={}, clone_args={}, cluster_args={}, + out_args=default_out_args, nproc=None, queue_size=None): + """ + Define clonally related sequences + + Arguments: + db_file = filename of input database + feed_func = the function that feeds the queue + work_func = the worker function that will run on each CPU + collect_func = the function that collects results from the workers + group_func = the function to use for assigning preclones + clone_func = the function to use for determining clones within preclonal groups + group_args = a dictionary of arguments to pass to group_func + clone_args = a dictionary of arguments to pass to clone_func + out_args = common output argument dictionary from parseCommonArgs + nproc = the number of processQueue processes; + if None defaults to the number of CPUs + queue_size = maximum size of the argument queue; + if None defaults to 2*nproc + + Returns: + a list of successful output file names + """ + # Print parameter info + log = OrderedDict() + log['START'] = 'DefineClones' + log['DB_FILE'] = os.path.basename(db_file) + if group_func is not None: + log['GROUP_FUNC'] = group_func.__name__ + log['GROUP_ARGS'] = group_args + log['CLONE_FUNC'] = clone_func.__name__ + + # TODO: this is yucky, but can be fixed by using a model class + clone_log = clone_args.copy() + if 'dist_mat' in clone_log: del clone_log['dist_mat'] + log['CLONE_ARGS'] = clone_log + + if cluster_func is not None: + log['CLUSTER_FUNC'] = cluster_func.__name__ + log['CLUSTER_ARGS'] = cluster_args + log['NPROC'] = nproc + printLog(log) + + # Define feeder function and arguments + feed_args = {'db_file': db_file, + 'group_func': group_func, + 'group_args': group_args} + # Define worker function and arguments + work_args = {'clone_func': clone_func, + 'clone_args': clone_args} + # Define collector function and arguments + collect_args = {'db_file': db_file, + 'out_args': out_args, + 'cluster_func': cluster_func, + 'cluster_args': cluster_args} + + # Call process manager + result = manageProcesses(feed_func, work_func, collect_func, + feed_args, work_args, collect_args, + nproc, queue_size) + + # Print log + result['log']['END'] = 'DefineClones' + printLog(result['log']) + + return result['out_files'] + + +def getArgParser(): + """ + Defines the ArgumentParser + + Arguments: + None + + Returns: + an ArgumentParser object + """ + # Define input and output fields + fields = dedent( + ''' + output files: + clone-pass + database with assigned clonal group numbers. + clone-fail + database with records failing clonal grouping. + + required fields: + SEQUENCE_ID, V_CALL or V_CALL_GENOTYPED, D_CALL, J_CALL, JUNCTION_LENGTH + + <field> + sequence field specified by the --sf parameter + + output fields: + CLONE + ''') + + # Define ArgumentParser + parser = ArgumentParser(description=__doc__, epilog=fields, + formatter_class=CommonHelpFormatter) + parser.add_argument('--version', action='version', + version='%(prog)s:' + ' %s-%s' %(__version__, __date__)) + subparsers = parser.add_subparsers(title='subcommands', dest='command', metavar='', + help='Cloning method') + # TODO: This is a temporary fix for Python issue 9253 + subparsers.required = True + + # Parent parser + parser_parent = getCommonArgParser(seq_in=False, seq_out=False, db_in=True, + multiproc=True) + + # Distance cloning method + parser_bygroup = subparsers.add_parser('bygroup', parents=[parser_parent], + formatter_class=CommonHelpFormatter, + help='''Defines clones as having same V assignment, + J assignment, and junction length with + specified substitution distance model.''') + parser_bygroup.add_argument('-f', nargs='+', action='store', dest='fields', default=None, + help='Additional fields to use for grouping clones (non VDJ)') + parser_bygroup.add_argument('--mode', action='store', dest='mode', + choices=('allele', 'gene'), default='gene', + help='''Specifies whether to use the V(D)J allele or gene for + initial grouping.''') + parser_bygroup.add_argument('--act', action='store', dest='action', default='set', + choices=('first', 'set'), + help='''Specifies how to handle multiple V(D)J assignments + for initial grouping.''') + parser_bygroup.add_argument('--model', action='store', dest='model', + choices=('aa', 'ham', 'm1n', 'hs1f', 'hs5f'), + default=default_bygroup_model, + help='''Specifies which substitution model to use for + calculating distance between sequences. Where m1n is the + mouse single nucleotide transition/trasversion model + of Smith et al, 1996; hs1f is the human single + nucleotide model derived from Yaari et al, 2013; hs5f + is the human S5F model of Yaari et al, 2013; ham is + nucleotide Hamming distance; and aa is amino acid + Hamming distance. The hs5f data should be + considered experimental.''') + parser_bygroup.add_argument('--dist', action='store', dest='distance', type=float, + default=default_distance, + help='The distance threshold for clonal grouping') + parser_bygroup.add_argument('--norm', action='store', dest='norm', + choices=('len', 'mut', 'none'), default=default_norm, + help='''Specifies how to normalize distances. One of none + (do not normalize), len (normalize by length), + or mut (normalize by number of mutations between sequences).''') + parser_bygroup.add_argument('--sym', action='store', dest='sym', + choices=('avg', 'min'), default=default_sym, + help='''Specifies how to combine asymmetric distances. One of avg + (average of A->B and B->A) or min (minimum of A->B and B->A).''') + parser_bygroup.add_argument('--link', action='store', dest='linkage', + choices=('single', 'average', 'complete'), default=default_linkage, + help='''Type of linkage to use for hierarchical clustering.''') + parser_bygroup.add_argument('--sf', action='store', dest='seq_field', + default=default_seq_field, + help='''The name of the field to be used to calculate + distance between records''') + parser_bygroup.set_defaults(feed_func=feedQueue) + parser_bygroup.set_defaults(work_func=processQueue) + parser_bygroup.set_defaults(collect_func=collectQueue) + parser_bygroup.set_defaults(group_func=indexJunctions) + parser_bygroup.set_defaults(clone_func=distanceClones) + + + # Hierarchical clustering cloning method + parser_hclust = subparsers.add_parser('hclust', parents=[parser_parent], + formatter_class=CommonHelpFormatter, + help='Defines clones by specified distance metric on CDR3s and \ + cutting of hierarchical clustering tree') +# parser_hclust.add_argument('-f', nargs='+', action='store', dest='fields', default=None, +# help='Fields to use for grouping clones (non VDJ)') + parser_hclust.add_argument('--method', action='store', dest='method', + choices=('chen2010', 'ademokun2011'), default=default_hclust_model, + help='Specifies which cloning method to use for calculating distance \ + between CDR3s, computing linkage, and cutting clusters') + parser_hclust.set_defaults(feed_func=feedQueueClust) + parser_hclust.set_defaults(work_func=processQueueClust) + parser_hclust.set_defaults(collect_func=collectQueueClust) + parser_hclust.set_defaults(cluster_func=hierClust) + + return parser + + +if __name__ == '__main__': + """ + Parses command line arguments and calls main function + """ + # Parse arguments + parser = getArgParser() + args = parser.parse_args() + args_dict = parseCommonArgs(args) + # Convert case of fields + if 'seq_field' in args_dict: + args_dict['seq_field'] = args_dict['seq_field'].upper() + if 'fields' in args_dict and args_dict['fields'] is not None: + args_dict['fields'] = [f.upper() for f in args_dict['fields']] + + # Define clone_args + if args.command == 'bygroup': + args_dict['group_args'] = {'fields': args_dict['fields'], + 'action': args_dict['action'], + 'mode':args_dict['mode']} + args_dict['clone_args'] = {'model': args_dict['model'], + 'distance': args_dict['distance'], + 'norm': args_dict['norm'], + 'sym': args_dict['sym'], + 'linkage': args_dict['linkage'], + 'seq_field': args_dict['seq_field']} + + # TODO: can be cleaned up with abstract model class + args_dict['clone_args']['dist_mat'] = getModelMatrix(args_dict['model']) + + del args_dict['fields'] + del args_dict['action'] + del args_dict['mode'] + del args_dict['model'] + del args_dict['distance'] + del args_dict['norm'] + del args_dict['sym'] + del args_dict['linkage'] + del args_dict['seq_field'] + + # Define clone_args + if args.command == 'hclust': + dist_funcs = {'chen2010':distChen2010, 'ademokun2011':distAdemokun2011} + args_dict['clone_func'] = dist_funcs[args_dict['method']] + args_dict['cluster_args'] = {'method': args_dict['method']} + #del args_dict['fields'] + del args_dict['method'] + + # Call defineClones + del args_dict['command'] + del args_dict['db_files'] + for f in args.__dict__['db_files']: + args_dict['db_file'] = f + defineClones(**args_dict) \ No newline at end of file