| 
0
 | 
     1 import re
 | 
| 
 | 
     2 import argparse
 | 
| 
 | 
     3 import time
 | 
| 
 | 
     4 starttime= int(time.time() * 1000)
 | 
| 
 | 
     5 
 | 
| 
 | 
     6 parser = argparse.ArgumentParser()
 | 
| 
 | 
     7 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file")
 | 
| 
 | 
     8 parser.add_argument("--output", help="The annotated output file to be merged back with the summary file")
 | 
| 
 | 
     9 
 | 
| 
 | 
    10 args = parser.parse_args()
 | 
| 
 | 
    11 
 | 
| 
 | 
    12 infile = args.input
 | 
| 
 | 
    13 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt"
 | 
| 
 | 
    14 output = args.output
 | 
| 
 | 
    15 #outfile = "identified.txt"
 | 
| 
 | 
    16 
 | 
| 
 | 
    17 dic = dict()
 | 
| 
 | 
    18 total = 0
 | 
| 
 | 
    19 
 | 
| 
 | 
    20 
 | 
| 
 | 
    21 first = True
 | 
| 
 | 
    22 IDIndex = 0
 | 
| 
 | 
    23 seqIndex = 0
 | 
| 
 | 
    24 
 | 
| 
 | 
    25 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
 | 
| 
 | 
    26 	for line in f:
 | 
| 
 | 
    27 		total += 1
 | 
| 
 | 
    28 		linesplt = line.split("\t")
 | 
| 
 | 
    29 		if first:
 | 
| 
 | 
    30 			print "linesplt", linesplt
 | 
| 
 | 
    31 			IDIndex = linesplt.index("Sequence ID")
 | 
| 
 | 
    32 			seqIndex = linesplt.index("Sequence")
 | 
| 
 | 
    33 			first = False
 | 
| 
 | 
    34 			continue
 | 
| 
 | 
    35 		
 | 
| 
 | 
    36 		ID = linesplt[IDIndex]
 | 
| 
 | 
    37 		if len(linesplt) < 28: #weird rows without a sequence
 | 
| 
 | 
    38 			dic[ID] = ""
 | 
| 
 | 
    39 		else:
 | 
| 
 | 
    40 			dic[ID] = linesplt[seqIndex]
 | 
| 
 | 
    41 			
 | 
| 
 | 
    42 print "Number of input sequences:", len(dic)
 | 
| 
 | 
    43 
 | 
| 
 | 
    44 #old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc
 | 
| 
 | 
    45 #old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag
 | 
| 
 | 
    46 
 | 
| 
 | 
    47 #lambda/kappa reference sequence
 | 
| 
 | 
    48 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg",
 | 
| 
 | 
    49                  "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc",
 | 
| 
 | 
    50                  "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence
 | 
| 
 | 
    51 
 | 
| 
 | 
    52 compiledregex = {"ca": [],
 | 
| 
 | 
    53                  "cg": [],
 | 
| 
 | 
    54                  "cm": []}
 | 
| 
 | 
    55 
 | 
| 
 | 
    56 #lambda/kappa reference sequence variable nucleotides
 | 
| 
 | 
    57 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'}
 | 
| 
 | 
    58 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'}
 | 
| 
 | 
    59 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
 | 
| 
 | 
    60 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'}
 | 
| 
 | 
    61 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
 | 
| 
 | 
    62 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'}
 | 
| 
 | 
    63 
 | 
| 
 | 
    64 #remove last snp for shorter cg sequence --- note, also change varsInCG
 | 
| 
 | 
    65 del cg1[132]
 | 
| 
 | 
    66 del cg2[132]
 | 
| 
 | 
    67 del cg3[132]
 | 
| 
 | 
    68 del cg4[132]
 | 
| 
 | 
    69 
 | 
| 
 | 
    70 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap
 | 
| 
 | 
    71 chunklength = 8
 | 
| 
 | 
    72 
 | 
| 
 | 
    73 #create the chunks of the reference sequence with regular expressions for the variable nucleotides
 | 
| 
 | 
    74 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2):
 | 
| 
 | 
    75   pos = i
 | 
| 
 | 
    76   chunk = searchstrings["ca"][i:i+chunklength]
 | 
| 
 | 
    77   result = ""
 | 
| 
 | 
    78   varsInResult = 0
 | 
| 
 | 
    79   for c in chunk:
 | 
| 
 | 
    80     if pos in ca1.keys():
 | 
| 
 | 
    81       varsInResult += 1
 | 
| 
 | 
    82       result += "[" + ca1[pos] + ca2[pos] + "]"
 | 
| 
 | 
    83     else:
 | 
| 
 | 
    84       result += c
 | 
| 
 | 
    85     pos += 1
 | 
| 
 | 
    86   compiledregex["ca"].append((re.compile(result), varsInResult))
 | 
| 
 | 
    87 
 | 
| 
 | 
    88 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2):
 | 
| 
 | 
    89   pos = i
 | 
| 
 | 
    90   chunk = searchstrings["cg"][i:i+chunklength]
 | 
| 
 | 
    91   result = ""
 | 
| 
 | 
    92   varsInResult = 0
 | 
| 
 | 
    93   for c in chunk:
 | 
| 
 | 
    94     if pos in cg1.keys():
 | 
| 
 | 
    95       varsInResult += 1
 | 
| 
 | 
    96       result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]"
 | 
| 
 | 
    97     else:
 | 
| 
 | 
    98       result += c
 | 
| 
 | 
    99     pos += 1
 | 
| 
 | 
   100   compiledregex["cg"].append((re.compile(result), varsInResult))
 | 
| 
 | 
   101 
 | 
| 
 | 
   102 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2):
 | 
| 
 | 
   103   compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False))
 | 
| 
 | 
   104 
 | 
| 
 | 
   105 
 | 
| 
 | 
   106 
 | 
| 
 | 
   107 def removeAndReturnMaxIndex(x): #simplifies a list comprehension
 | 
| 
 | 
   108   m = max(x)
 | 
| 
 | 
   109   index = x.index(m)
 | 
| 
 | 
   110   x[index] = 0
 | 
| 
 | 
   111   return index
 | 
| 
 | 
   112   
 | 
| 
 | 
   113 
 | 
| 
 | 
   114 start_location = dict()
 | 
| 
 | 
   115 hits = dict()
 | 
| 
 | 
   116 alltotal = 0
 | 
| 
 | 
   117 for key in compiledregex.keys(): #for ca/cg/cm
 | 
| 
 | 
   118 	regularexpressions = compiledregex[key] #get the compiled regular expressions
 | 
| 
 | 
   119 	for ID in dic.keys()[0:]: #for every ID
 | 
| 
 | 
   120 		if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists
 | 
| 
 | 
   121 			hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0}
 | 
| 
 | 
   122 		currentIDHits = hits[ID]
 | 
| 
 | 
   123 		seq = dic[ID]
 | 
| 
 | 
   124 		lastindex = 0
 | 
| 
 | 
   125 		start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0)
 | 
| 
 | 
   126 		start = [0] * (len(seq) + start_zero)
 | 
| 
 | 
   127 		for i, regexp in enumerate(regularexpressions): #for every regular expression
 | 
| 
 | 
   128 			relativeStartLocation = lastindex - (chunklength / 2) * i
 | 
| 
 | 
   129 			if relativeStartLocation >= len(seq):
 | 
| 
 | 
   130 				break
 | 
| 
 | 
   131 			regex, hasVar = regexp
 | 
| 
 | 
   132 			matches = regex.finditer(seq[lastindex:])
 | 
| 
 | 
   133 			for match in matches: #for every match with the current regex, only uses the first hit
 | 
| 
 | 
   134 				lastindex += match.start()
 | 
| 
 | 
   135 				start[relativeStartLocation + start_zero] += 1
 | 
| 
 | 
   136 				if hasVar: #if the regex has a variable nt in it
 | 
| 
 | 
   137 					chunkstart = chunklength / 2 * i #where in the reference does this chunk start
 | 
| 
 | 
   138 					chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end
 | 
| 
 | 
   139 					if key == "ca": #just calculate the variable nt score for 'ca', cheaper
 | 
| 
 | 
   140 						currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]])
 | 
| 
 | 
   141 						currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]])
 | 
| 
 | 
   142 					elif key == "cg": #just calculate the variable nt score for 'cg', cheaper
 | 
| 
 | 
   143 						currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]])
 | 
| 
 | 
   144 						currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]])
 | 
| 
 | 
   145 						currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]])
 | 
| 
 | 
   146 						currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]])
 | 
| 
 | 
   147 					else: #key == "cm" #no variable regions in 'cm'
 | 
| 
 | 
   148 						pass
 | 
| 
 | 
   149 				break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped
 | 
| 
 | 
   150 			else: #only runs if there were no hits
 | 
| 
 | 
   151 				continue
 | 
| 
 | 
   152 			#print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i]
 | 
| 
 | 
   153 			currentIDHits[key + "_hits"] += 1
 | 
| 
 | 
   154 		start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1])
 | 
| 
 | 
   155 		#start_location[ID + "_" + key] = str(start.index(max(start)))
 | 
| 
 | 
   156 
 | 
| 
 | 
   157 
 | 
| 
 | 
   158 chunksInCA = len(compiledregex["ca"])
 | 
| 
 | 
   159 chunksInCG = len(compiledregex["cg"])
 | 
| 
 | 
   160 chunksInCM = len(compiledregex["cm"])
 | 
| 
 | 
   161 requiredChunkPercentage = 0.7
 | 
| 
 | 
   162 varsInCA = float(len(ca1.keys()) * 2)
 | 
| 
 | 
   163 varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice
 | 
| 
 | 
   164 varsInCM = 0
 | 
| 
 | 
   165 
 | 
| 
 | 
   166 
 | 
| 
 | 
   167 
 | 
| 
 | 
   168 first = True
 | 
| 
 | 
   169 seq_write_count=0
 | 
| 
 | 
   170 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
 | 
| 
 | 
   171 	with open(output, 'w') as o:
 | 
| 
 | 
   172 		for line in f:
 | 
| 
 | 
   173 			total += 1
 | 
| 
 | 
   174 			if first:
 | 
| 
 | 
   175 				o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
 | 
| 
 | 
   176 				first = False
 | 
| 
 | 
   177 				continue
 | 
| 
 | 
   178 			linesplt = line.split("\t")
 | 
| 
 | 
   179 			if linesplt[2] == "No results":
 | 
| 
 | 
   180 				pass
 | 
| 
 | 
   181 			ID = linesplt[1]
 | 
| 
 | 
   182 			currentIDHits = hits[ID]
 | 
| 
 | 
   183 			possibleca = float(len(compiledregex["ca"]))
 | 
| 
 | 
   184 			possiblecg = float(len(compiledregex["cg"]))
 | 
| 
 | 
   185 			possiblecm = float(len(compiledregex["cm"]))
 | 
| 
 | 
   186 			cahits = currentIDHits["ca_hits"]
 | 
| 
 | 
   187 			cghits = currentIDHits["cg_hits"]
 | 
| 
 | 
   188 			cmhits = currentIDHits["cm_hits"]
 | 
| 
 | 
   189 			if cahits >= cghits and cahits >= cmhits: #its a ca gene
 | 
| 
 | 
   190 				ca1hits = currentIDHits["ca1"]
 | 
| 
 | 
   191 				ca2hits = currentIDHits["ca2"]
 | 
| 
 | 
   192 				if ca1hits >= ca2hits:
 | 
| 
 | 
   193 					o.write(ID + "\tca1\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
 | 
| 
 | 
   194 				else:
 | 
| 
 | 
   195 					o.write(ID + "\tca2\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
 | 
| 
 | 
   196 			elif cghits >= cahits and cghits >= cmhits: #its a cg gene
 | 
| 
 | 
   197 				cg1hits = currentIDHits["cg1"]
 | 
| 
 | 
   198 				cg2hits = currentIDHits["cg2"]
 | 
| 
 | 
   199 				cg3hits = currentIDHits["cg3"]
 | 
| 
 | 
   200 				cg4hits = currentIDHits["cg4"]
 | 
| 
 | 
   201 				if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene
 | 
| 
 | 
   202 					o.write(ID + "\tcg1\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
 | 
| 
 | 
   203 				elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene
 | 
| 
 | 
   204 					o.write(ID + "\tcg2\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
 | 
| 
 | 
   205 				elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene
 | 
| 
 | 
   206 					o.write(ID + "\tcg3\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
 | 
| 
 | 
   207 				else: #cg4 gene
 | 
| 
 | 
   208 					o.write(ID + "\tcg4\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
 | 
| 
 | 
   209 			else: #its a cm gene
 | 
| 
 | 
   210 				o.write(ID + "\tcm\t100\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
 | 
| 
 | 
   211 			seq_write_count += 1
 | 
| 
 | 
   212 
 | 
| 
 | 
   213 print "Time: %i" % (int(time.time() * 1000) - starttime)
 | 
| 
 | 
   214 
 | 
| 
 | 
   215 print "Number of sequences written to file:", seq_write_count
 | 
| 
 | 
   216 
 | 
| 
 | 
   217 
 | 
| 
 | 
   218 
 | 
| 
 | 
   219 
 | 
| 
 | 
   220 
 |