| 0 | 1 library(data.table) | 
|  | 2 library(ggplot2) | 
|  | 3 library(reshape2) | 
|  | 4 | 
|  | 5 args <- commandArgs(trailingOnly = TRUE) | 
|  | 6 | 
|  | 7 input = args[1] | 
|  | 8 genes = unlist(strsplit(args[2], ",")) | 
|  | 9 outputdir = args[3] | 
|  | 10 include_fr1 = ifelse(args[4] == "yes", T, F) | 
|  | 11 setwd(outputdir) | 
|  | 12 | 
|  | 13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | 
|  | 14 | 
|  | 15 if(length(dat$Sequence.ID) == 0){ | 
|  | 16   setwd(outputdir) | 
|  | 17   result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | 
|  | 18   row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)") | 
|  | 19   write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | 
|  | 20   transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | 
|  | 21   row.names(transitionTable) = c("A", "C", "G", "T") | 
|  | 22   transitionTable["A","A"] = NA | 
|  | 23   transitionTable["C","C"] = NA | 
|  | 24   transitionTable["G","G"] = NA | 
|  | 25   transitionTable["T","T"] = NA | 
|  | 26   write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | 
|  | 27   cat("0", file="n.txt") | 
|  | 28   stop("No data") | 
|  | 29 } | 
|  | 30 | 
|  | 31 cleanup_columns = c("FR1.IMGT.c.a", | 
|  | 32                     "FR2.IMGT.g.t", | 
|  | 33                     "CDR1.IMGT.Nb.of.nucleotides", | 
|  | 34                     "CDR2.IMGT.t.a", | 
|  | 35                     "FR1.IMGT.c.g", | 
|  | 36                     "CDR1.IMGT.c.t", | 
|  | 37                     "FR2.IMGT.a.c", | 
|  | 38                     "FR2.IMGT.Nb.of.mutations", | 
|  | 39                     "FR2.IMGT.g.c", | 
|  | 40                     "FR2.IMGT.a.g", | 
|  | 41                     "FR3.IMGT.t.a", | 
|  | 42                     "FR3.IMGT.t.c", | 
|  | 43                     "FR2.IMGT.g.a", | 
|  | 44                     "FR3.IMGT.c.g", | 
|  | 45                     "FR1.IMGT.Nb.of.mutations", | 
|  | 46                     "CDR1.IMGT.g.a", | 
|  | 47                     "CDR1.IMGT.t.g", | 
|  | 48                     "CDR1.IMGT.g.c", | 
|  | 49                     "CDR2.IMGT.Nb.of.nucleotides", | 
|  | 50                     "FR2.IMGT.a.t", | 
|  | 51                     "CDR1.IMGT.Nb.of.mutations", | 
|  | 52                     "CDR3.IMGT.Nb.of.nucleotides", | 
|  | 53                     "CDR1.IMGT.a.g", | 
|  | 54                     "FR3.IMGT.a.c", | 
|  | 55                     "FR1.IMGT.g.a", | 
|  | 56                     "FR3.IMGT.a.g", | 
|  | 57                     "FR1.IMGT.a.t", | 
|  | 58                     "CDR2.IMGT.a.g", | 
|  | 59                     "CDR2.IMGT.Nb.of.mutations", | 
|  | 60                     "CDR2.IMGT.g.t", | 
|  | 61                     "CDR2.IMGT.a.c", | 
|  | 62                     "CDR1.IMGT.t.c", | 
|  | 63                     "FR3.IMGT.g.c", | 
|  | 64                     "FR1.IMGT.g.t", | 
|  | 65                     "FR3.IMGT.g.t", | 
|  | 66                     "CDR1.IMGT.a.t", | 
|  | 67                     "FR1.IMGT.a.g", | 
|  | 68                     "FR3.IMGT.a.t", | 
|  | 69                     "FR3.IMGT.Nb.of.nucleotides", | 
|  | 70                     "FR2.IMGT.t.c", | 
|  | 71                     "CDR2.IMGT.g.a", | 
|  | 72                     "FR2.IMGT.t.a", | 
|  | 73                     "CDR1.IMGT.t.a", | 
|  | 74                     "FR2.IMGT.t.g", | 
|  | 75                     "FR3.IMGT.t.g", | 
|  | 76                     "FR2.IMGT.Nb.of.nucleotides", | 
|  | 77                     "FR1.IMGT.t.a", | 
|  | 78                     "FR1.IMGT.t.g", | 
|  | 79                     "FR3.IMGT.c.t", | 
|  | 80                     "FR1.IMGT.t.c", | 
|  | 81                     "CDR2.IMGT.a.t", | 
|  | 82                     "FR2.IMGT.c.t", | 
|  | 83                     "CDR1.IMGT.g.t", | 
|  | 84                     "CDR2.IMGT.t.g", | 
|  | 85                     "FR1.IMGT.Nb.of.nucleotides", | 
|  | 86                     "CDR1.IMGT.c.g", | 
|  | 87                     "CDR2.IMGT.t.c", | 
|  | 88                     "FR3.IMGT.g.a", | 
|  | 89                     "CDR1.IMGT.a.c", | 
|  | 90                     "FR2.IMGT.c.a", | 
|  | 91                     "FR3.IMGT.Nb.of.mutations", | 
|  | 92                     "FR2.IMGT.c.g", | 
|  | 93                     "CDR2.IMGT.g.c", | 
|  | 94                     "FR1.IMGT.g.c", | 
|  | 95                     "CDR2.IMGT.c.t", | 
|  | 96                     "FR3.IMGT.c.a", | 
|  | 97                     "CDR1.IMGT.c.a", | 
|  | 98                     "CDR2.IMGT.c.g", | 
|  | 99                     "CDR2.IMGT.c.a", | 
|  | 100                     "FR1.IMGT.c.t", | 
|  | 101                     "FR1.IMGT.Nb.of.silent.mutations", | 
|  | 102                     "FR2.IMGT.Nb.of.silent.mutations", | 
|  | 103                     "FR3.IMGT.Nb.of.silent.mutations", | 
|  | 104                     "FR1.IMGT.Nb.of.nonsilent.mutations", | 
|  | 105                     "FR2.IMGT.Nb.of.nonsilent.mutations", | 
|  | 106                     "FR3.IMGT.Nb.of.nonsilent.mutations") | 
|  | 107 | 
|  | 108 | 
|  | 109 print("Cleaning up columns") | 
|  | 110 for(col in cleanup_columns){ | 
|  | 111   dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | 
|  | 112   #dat[dat[,col] == "",] = "0" | 
|  | 113   dat[,col] = as.numeric(dat[,col]) | 
|  | 114   dat[is.na(dat[,col]),col] = 0 | 
|  | 115 } | 
|  | 116 | 
|  | 117 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | 
|  | 118 if(!include_fr1){ | 
|  | 119 	regions = c("CDR1", "FR2", "CDR2", "FR3") | 
|  | 120 } | 
|  | 121 | 
|  | 122 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | 
|  | 123 | 
|  | 124 print("aggregating data into new columns") | 
|  | 125 | 
|  | 126 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | 
|  | 127 dat$VRegionMutations =  apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | 
|  | 128 | 
|  | 129 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | 
|  | 130 dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq) | 
|  | 131 dat$VRegionNucleotides =  apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | 
|  | 132 | 
|  | 133 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | 
|  | 134 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | 
|  | 135 | 
|  | 136 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | 
|  | 137 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | 
|  | 138 | 
|  | 139 | 
|  | 140 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | 
|  | 141 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | 
|  | 142 | 
|  | 143 | 
|  | 144 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | 
|  | 145 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | 
|  | 146 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | 
|  | 147 | 
|  | 148 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | 
|  | 149 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | 
|  | 150 | 
|  | 151 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | 
|  | 152 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | 
|  | 153 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | 
|  | 154 | 
|  | 155 | 
|  | 156 FRRegions = regions[grepl("FR", regions)] | 
|  | 157 CDRRegions = regions[grepl("CDR", regions)] | 
|  | 158 | 
|  | 159 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | 
|  | 160 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | 
|  | 161 | 
|  | 162 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | 
|  | 163 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | 
|  | 164 | 
|  | 165 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | 
|  | 166 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | 
|  | 167 | 
|  | 168 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | 
|  | 169 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | 
|  | 170 | 
|  | 171 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | 
|  | 172 | 
|  | 173 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 174 | 
|  | 175 setwd(outputdir) | 
|  | 176 | 
|  | 177 base.order = data.frame(base=c("A", "T", "C", "G"), order=1:4) | 
|  | 178 | 
|  | 179 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | 
|  | 180 	tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),] | 
|  | 181 | 
|  | 182 	j = i - 1 | 
|  | 183 	x = (j * 3) + 1 | 
|  | 184 	y = (j * 3) + 2 | 
|  | 185 	z = (j * 3) + 3 | 
|  | 186 | 
|  | 187 	if(nrow(tmp) > 0){ | 
|  | 188 | 
|  | 189 		if(fname == "sum"){ | 
|  | 190 		matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 
|  | 191 		matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 
|  | 192 		matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1) | 
|  | 193 		} else { | 
|  | 194 		matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 
|  | 195 		matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 
|  | 196 		matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1) | 
|  | 197 		} | 
|  | 198 | 
|  | 199 		matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | 
|  | 200 		matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 
|  | 201 		matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | 
|  | 202 | 
|  | 203 		matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | 
|  | 204 		matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 
|  | 205 		matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | 
|  | 206 | 
|  | 207 		matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | 
|  | 208 		matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | 
|  | 209 		matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | 
|  | 210 | 
|  | 211 		matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | 
|  | 212 		matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 
|  | 213 		matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | 
|  | 214 | 
|  | 215 		matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | 
|  | 216 		matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | 
|  | 217 		matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | 
|  | 218 | 
|  | 219 		matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | 
|  | 220 		matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 
|  | 221 		matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | 
|  | 222 | 
|  | 223 		matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | 
|  | 224 		matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | 
|  | 225 		matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | 
|  | 226 | 
|  | 227 		matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | 
|  | 228 		matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | 
|  | 229 		matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | 
|  | 230 | 
|  | 231 		if(fname == "sum"){ | 
|  | 232 			matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) | 
|  | 233 			matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 
|  | 234 			matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1) | 
|  | 235 | 
|  | 236 			matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) | 
|  | 237 			matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 
|  | 238 			matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1) | 
|  | 239 		} | 
|  | 240 	} | 
|  | 241 | 
|  | 242 	transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | 
|  | 243 	row.names(transitionTable) = c("A", "C", "G", "T") | 
|  | 244 	transitionTable["A","A"] = NA | 
|  | 245 	transitionTable["C","C"] = NA | 
|  | 246 	transitionTable["G","G"] = NA | 
|  | 247 	transitionTable["T","T"] = NA | 
|  | 248 | 
|  | 249 	if(nrow(tmp) > 0){ | 
|  | 250 		for(nt1 in nts){ | 
|  | 251 			for(nt2 in nts){ | 
|  | 252 				if(nt1 == nt2){ | 
|  | 253 					next | 
|  | 254 				} | 
|  | 255 				NT1 = LETTERS[letters == nt1] | 
|  | 256 				NT2 = LETTERS[letters == nt2] | 
|  | 257 				FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | 
|  | 258 				CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | 
|  | 259 				FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | 
|  | 260 				CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | 
|  | 261 				FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | 
|  | 262 				if(include_fr1){ | 
|  | 263 					transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | 
|  | 264 				} else { | 
|  | 265 					transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | 
|  | 266 				} | 
|  | 267 			} | 
|  | 268 		} | 
|  | 269 		transition = transitionTable | 
|  | 270 		transition$id = names(transition) | 
|  | 271 | 
|  | 272 		transition2 = melt(transition, id.vars="id") | 
|  | 273 | 
|  | 274 		transition2 = merge(transition2, base.order, by.x="id", by.y="base") | 
|  | 275 		transition2 = merge(transition2, base.order, by.x="variable", by.y="base") | 
|  | 276 | 
|  | 277 		transition2[is.na(transition2$value),]$value = 0 | 
|  | 278 | 
|  | 279 		if(!all(transition2$value == 0)){ #having rows of data but a transition table filled with 0 is bad | 
|  | 280 | 
|  | 281 			print("Plotting stacked transition") | 
|  | 282 | 
|  | 283 			png(filename=paste("transitions_stacked_", name, ".png", sep="")) | 
|  | 284 			p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity") #stacked bar | 
|  | 285 			p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL)) | 
|  | 286 			print(p) | 
|  | 287 			dev.off() | 
|  | 288 | 
|  | 289 			print("Plotting heatmap transition") | 
|  | 290 | 
|  | 291 			png(filename=paste("transitions_heatmap_", name, ".png", sep="")) | 
|  | 292 			p = ggplot(transition2, aes(factor(reorder(id, order.x)), factor(reorder(variable, order.y)))) + geom_tile(aes(fill = value), colour="white") + scale_fill_gradient(low="white", high="steelblue") #heatmap | 
|  | 293 			p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") | 
|  | 294 			print(p) | 
|  | 295 			dev.off() | 
|  | 296 		} else { | 
|  | 297 			print("No data to plot") | 
|  | 298 		} | 
|  | 299 	} | 
|  | 300 | 
|  | 301 	#print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | 
|  | 302 | 
|  | 303 	write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 
|  | 304 	write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 305 | 
|  | 306 	cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | 
|  | 307 	cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep="")) | 
|  | 308 | 
|  | 309 	#print(paste(fname, name, nrow(tmp))) | 
|  | 310 | 
|  | 311 	matrx | 
|  | 312 } | 
|  | 313 | 
|  | 314 nts = c("a", "c", "g", "t") | 
|  | 315 zeros=rep(0, 4) | 
|  | 316 | 
|  | 317 funcs = c(median, sum, mean) | 
|  | 318 fnames = c("median", "sum", "mean") | 
|  | 319 | 
|  | 320 print("Creating result tables") | 
|  | 321 | 
|  | 322 for(i in 1:length(funcs)){ | 
|  | 323 	func = funcs[[i]] | 
|  | 324 	fname = fnames[[i]] | 
|  | 325 | 
|  | 326 	rows = 9 | 
|  | 327 	if(fname == "sum"){ | 
|  | 328 		rows = 11 | 
|  | 329 	} | 
|  | 330 	matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows) | 
|  | 331 | 
|  | 332 	for(i in 1:length(genes)){ | 
|  | 333 		print(paste("Creating table for", fname, genes[i])) | 
|  | 334 		matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) | 
|  | 335 	} | 
|  | 336 | 
|  | 337 	matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all") | 
|  | 338 | 
|  | 339 	result = data.frame(matrx) | 
|  | 340 	if(fname == "sum"){ | 
|  | 341 		row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR") | 
|  | 342 	} else { | 
|  | 343 		row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | 
|  | 344 	} | 
|  | 345 | 
|  | 346 	write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | 
|  | 347 } | 
|  | 348 | 
|  | 349 print("Adding median number of mutations to sum table") | 
|  | 350 | 
|  | 351 sum.table = read.table("mutations_sum.txt", sep=",", header=F) | 
|  | 352 median.table = read.table("mutations_median.txt", sep=",", header=F) | 
|  | 353 | 
|  | 354 new.table = sum.table[1,] | 
|  | 355 new.table[2,] = median.table[1,] | 
|  | 356 new.table[3:12,] = sum.table[2:11,] | 
|  | 357 new.table[,1] = as.character(new.table[,1]) | 
|  | 358 new.table[2,1] = "Median of Number of Mutations (%)" | 
|  | 359 | 
|  | 360 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] | 
|  | 361 | 
|  | 362 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) | 
|  | 363 | 
|  | 364 | 
|  | 365 print("Plotting ca piechart") | 
|  | 366 | 
|  | 367 dat = dat[!grepl("^unmatched", dat$best_match),] | 
|  | 368 | 
|  | 369 #blegh | 
|  | 370 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match | 
|  | 371 if(length(genesForPlot) > 0){ | 
|  | 372 	genesForPlot = data.frame(table(genesForPlot)) | 
|  | 373 	colnames(genesForPlot) = c("Gene","Freq") | 
|  | 374 	genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | 
|  | 375 | 
|  | 376 	pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | 
|  | 377 	pc = pc + geom_bar(width = 1, stat = "identity") | 
|  | 378 	pc = pc + coord_polar(theta="y") | 
|  | 379 	pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")")) | 
|  | 380 	write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 381 | 
|  | 382 	png(filename="ca.png") | 
|  | 383 	print(pc) | 
|  | 384 	dev.off() | 
|  | 385 } | 
|  | 386 | 
|  | 387 print("Plotting cg piechart") | 
|  | 388 | 
|  | 389 genesForPlot = dat[grepl("cg", dat$best_match),]$best_match | 
|  | 390 if(length(genesForPlot) > 0){ | 
|  | 391 	genesForPlot = data.frame(table(genesForPlot)) | 
|  | 392 	colnames(genesForPlot) = c("Gene","Freq") | 
|  | 393 	genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | 
|  | 394 | 
|  | 395 	pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | 
|  | 396 	pc = pc + geom_bar(width = 1, stat = "identity") | 
|  | 397 	pc = pc + coord_polar(theta="y") | 
|  | 398 	pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")")) | 
|  | 399 	write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 400 | 
|  | 401 	png(filename="cg.png") | 
|  | 402 	print(pc) | 
|  | 403 	dev.off() | 
|  | 404 } | 
|  | 405 | 
|  | 406 | 
|  | 407 print("Plotting scatterplot") | 
|  | 408 | 
|  | 409 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | 
|  | 410 | 
|  | 411 p = ggplot(dat, aes(best_match, percentage_mutations)) | 
|  | 412 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | 
|  | 413 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") | 
|  | 414 | 
|  | 415 png(filename="scatter.png") | 
|  | 416 print(p) | 
|  | 417 dev.off() | 
|  | 418 | 
|  | 419 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 420 | 
|  | 421 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 422 | 
|  | 423 | 
|  | 424 print("Plotting frequency ranges plot") | 
|  | 425 | 
|  | 426 dat$best_match_class = substr(dat$best_match, 0, 2) | 
|  | 427 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | 
|  | 428 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | 
|  | 429 | 
|  | 430 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | 
|  | 431 | 
|  | 432 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count)) | 
|  | 433 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") | 
|  | 434 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") | 
|  | 435 | 
|  | 436 png(filename="frequency_ranges.png") | 
|  | 437 print(p) | 
|  | 438 dev.off() | 
|  | 439 | 
|  | 440 frequency_bins_data_by_class = frequency_bins_data | 
|  | 441 | 
|  | 442 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 443 | 
|  | 444 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")]) | 
|  | 445 | 
|  | 446 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
|  | 447 | 
|  | 448 | 
|  | 449 #frequency_bins_data_by_class | 
|  | 450 #frequency_ranges_subclasses.txt | 
|  | 451 | 
|  | 452 | 
|  | 453 | 
|  | 454 | 
|  | 455 | 
|  | 456 | 
|  | 457 | 
|  | 458 | 
|  | 459 | 
|  | 460 | 
|  | 461 | 
|  | 462 | 
|  | 463 | 
|  | 464 | 
|  | 465 | 
|  | 466 | 
|  | 467 | 
|  | 468 | 
|  | 469 | 
|  | 470 | 
|  | 471 | 
|  | 472 | 
|  | 473 | 
|  | 474 | 
|  | 475 | 
|  | 476 | 
|  | 477 |