0
|
1 library(reshape2)
|
|
2
|
|
3 args <- commandArgs(trailingOnly = TRUE)
|
|
4
|
|
5 before.unique.file = args[1]
|
|
6 merged.file = args[2]
|
|
7 outputdir = args[3]
|
|
8 gene.classes = unlist(strsplit(args[4], ","))
|
|
9 hotspot.analysis.sum.file = args[5]
|
|
10 NToverview.file = paste(outputdir, "ntoverview.txt", sep="/")
|
|
11 NTsum.file = paste(outputdir, "ntsum.txt", sep="/")
|
|
12 main.html = "index.html"
|
|
13
|
|
14 setwd(outputdir)
|
|
15
|
|
16 before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
|
|
17 merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
|
|
18 hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="")
|
|
19
|
|
20 #before.unique = before.unique[!grepl("unmatched", before.unique$best_match),]
|
|
21
|
|
22 before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
|
|
23
|
|
24 IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")]
|
|
25 IDs$best_match = as.character(IDs$best_match)
|
|
26
|
|
27 #dat = data.frame(data.table(dat)[, list(freq=.N), by=c("best_match", "seq_conc")])
|
|
28
|
|
29 dat = data.frame(table(before.unique$seq_conc))
|
|
30 #dat = data.frame(table(merged$seq_conc, merged$Functionality))
|
|
31
|
|
32 #dat = dat[dat$Freq > 1,]
|
|
33
|
|
34 #names(dat) = c("seq_conc", "Functionality", "Freq")
|
|
35 names(dat) = c("seq_conc", "Freq")
|
|
36
|
|
37 dat$seq_conc = factor(dat$seq_conc)
|
|
38
|
|
39 dat = dat[order(as.character(dat$seq_conc)),]
|
|
40
|
|
41 #writing html from R...
|
|
42 get.bg.color = function(val){
|
|
43 if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color
|
|
44 return(ifelse(val,"#eafaf1","#f9ebea"))
|
|
45 } else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0
|
|
46 return(ifelse(val > 0,"#eaecee","white"))
|
|
47 } else {
|
|
48 return("white")
|
|
49 }
|
|
50 }
|
|
51 td = function(val) {
|
|
52 return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep=""))
|
|
53 }
|
|
54 tr = function(val) {
|
|
55 return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse=""))
|
|
56 }
|
|
57
|
|
58 make.link = function(id, clss, val) {
|
|
59 paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="")
|
|
60 }
|
|
61 tbl = function(df) {
|
|
62 res = "<table border='1'>"
|
|
63 for(i in 1:nrow(df)){
|
|
64 res = paste(res, tr(df[i,]), sep="")
|
|
65 }
|
|
66 res = paste(res, "</table>")
|
|
67 }
|
|
68
|
|
69 cat("<table border='1' class='pure-table pure-table-striped'>", file=main.html, append=F)
|
|
70 #cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
|
|
71 cat("<tr>", file=main.html, append=T)
|
|
72 cat("<th>Sequence</th><th>Functionality</th><th>ca1</th><th>ca2</th><th>cg1</th><th>cg2</th><th>cg3</th><th>cg4</th><th>cm</th><th>un</th>", file=main.html, append=T)
|
|
73 cat("<th>total CA</th><th>total CG</th><th>number of subclasses</th><th>present in both Ca and Cg</th><th>Ca1+Ca2</th>", file=main.html, append=T)
|
|
74 cat("<th>Cg1+Cg2</th><th>Cg1+Cg3</th><th>Cg1+Cg4</th><th>Cg2+Cg3</th><th>Cg2+Cg4</th><th>Cg3+Cg4</th>", file=main.html, append=T)
|
|
75 cat("<th>Cg1+Cg2+Cg3</th><th>Cg2+Cg3+Cg4</th><th>Cg1+Cg2+Cg4</th><th>Cg1+Cg3+Cg4</th><th>Cg1+Cg2+Cg3+Cg4</th>", file=main.html, append=T)
|
|
76 cat("</tr>", file=main.html, append=T)
|
|
77
|
|
78
|
|
79
|
|
80 single.sequences=0 #sequence only found once, skipped
|
|
81 in.multiple=0 #same sequence across multiple subclasses
|
|
82 multiple.in.one=0 #same sequence multiple times in one subclass
|
|
83 unmatched=0 #all of the sequences are unmatched
|
|
84 some.unmatched=0 #one or more sequences in a clone are unmatched
|
|
85 matched=0 #should be the same als matched sequences
|
|
86
|
|
87 sequence.id.page="by_id.html"
|
|
88
|
|
89 for(i in 1:nrow(dat)){
|
|
90
|
|
91 ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),]
|
|
92 ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),]
|
|
93
|
|
94 cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),]
|
|
95 cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),]
|
|
96 cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),]
|
|
97 cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),]
|
|
98
|
|
99 cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),]
|
|
100
|
|
101 un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),]
|
|
102 allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, un)
|
|
103
|
|
104 ca1.n = nrow(ca1)
|
|
105 ca2.n = nrow(ca2)
|
|
106
|
|
107 cg1.n = nrow(cg1)
|
|
108 cg2.n = nrow(cg2)
|
|
109 cg3.n = nrow(cg3)
|
|
110 cg4.n = nrow(cg4)
|
|
111
|
|
112 cm.n = nrow(cm)
|
|
113
|
|
114 un.n = nrow(un)
|
|
115
|
|
116 classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, un.n)
|
|
117
|
|
118 classes.sum = sum(classes)
|
|
119
|
|
120 if(classes.sum == 1){
|
|
121 single.sequences = single.sequences + 1
|
|
122 next
|
|
123 }
|
|
124
|
|
125 if(un.n == classes.sum){
|
|
126 unmatched = unmatched + 1
|
|
127 next
|
|
128 }
|
|
129
|
|
130 in.classes = sum(classes > 0)
|
|
131
|
|
132 matched = matched + in.classes #count in how many subclasses the sequence occurs.
|
|
133
|
|
134 if(any(classes == classes.sum)){
|
|
135 multiple.in.one = multiple.in.one + 1
|
|
136 } else if (un.n > 0) {
|
|
137 some.unmatched = some.unmatched + 1
|
|
138 } else {
|
|
139 in.multiple = in.multiple + 1
|
|
140 }
|
|
141
|
|
142 id = as.numeric(dat[i,"seq_conc"])
|
|
143
|
|
144 functionality = paste(unique(allc[,"Functionality"]), collapse=",")
|
|
145
|
|
146 by.id.row = c()
|
|
147
|
|
148 if(ca1.n > 0){
|
|
149 cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep=""))
|
|
150 }
|
|
151
|
|
152 if(ca2.n > 0){
|
|
153 cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep=""))
|
|
154 }
|
|
155
|
|
156 if(cg1.n > 0){
|
|
157 cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep=""))
|
|
158 }
|
|
159
|
|
160 if(cg2.n > 0){
|
|
161 cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep=""))
|
|
162 }
|
|
163
|
|
164 if(cg3.n > 0){
|
|
165 cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep=""))
|
|
166 }
|
|
167
|
|
168 if(cg4.n > 0){
|
|
169 cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep=""))
|
|
170 }
|
|
171
|
|
172 if(cm.n > 0){
|
|
173 cat(tbl(cm), file=paste("IGM_", id, ".html", sep=""))
|
|
174 }
|
|
175
|
|
176 if(un.n > 0){
|
|
177 cat(tbl(un), file=paste("un_", id, ".html", sep=""))
|
|
178 }
|
|
179
|
|
180 ca1.html = make.link(id, "IGA1", ca1.n)
|
|
181 ca2.html = make.link(id, "IGA2", ca2.n)
|
|
182
|
|
183 cg1.html = make.link(id, "IGG1", cg1.n)
|
|
184 cg2.html = make.link(id, "IGG2", cg2.n)
|
|
185 cg3.html = make.link(id, "IGG3", cg3.n)
|
|
186 cg4.html = make.link(id, "IGG4", cg4.n)
|
|
187
|
|
188 cm.html = make.link(id, "IGM", cm.n)
|
|
189
|
|
190 un.html = make.link(id, "un", un.n)
|
|
191
|
|
192 #extra columns
|
|
193 ca.n = ca1.n + ca2.n
|
|
194
|
|
195 cg.n = cg1.n + cg2.n + cg3.n + cg4.n
|
|
196
|
|
197 #in.classes
|
|
198
|
|
199 in.ca.cg = (ca.n > 0 & cg.n > 0)
|
|
200
|
|
201 in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0)
|
|
202
|
|
203 in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0)
|
|
204 in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0)
|
|
205 in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0)
|
|
206 in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0)
|
|
207 in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0)
|
|
208 in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0)
|
|
209
|
|
210 in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0)
|
|
211 in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
|
|
212 in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0)
|
|
213 in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0)
|
|
214
|
|
215 in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
|
|
216
|
|
217
|
|
218
|
|
219
|
|
220 #rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
|
|
221 rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
|
|
222 rw = c(rw, ca.n, cg.n, in.classes, in.ca.cg, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all)
|
|
223
|
|
224 cat(tr(rw), file=main.html, append=T)
|
|
225
|
|
226
|
|
227 for(i in 1:nrow(allc)){ #generate html by id
|
|
228 html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"])
|
|
229 cat(paste(html, "<br />"), file=sequence.id.page, append=T)
|
|
230 }
|
|
231 }
|
|
232
|
|
233 cat("</table>", file=main.html, append=T)
|
|
234
|
|
235 print(paste("Single sequences:", single.sequences))
|
|
236 print(paste("Sequences in multiple subclasses:", in.multiple))
|
|
237 print(paste("Multiple sequences in one subclass:", multiple.in.one))
|
|
238 print(paste("Matched with unmatched:", some.unmatched))
|
|
239 print(paste("Count that should match 'matched' sequences:", matched))
|
|
240
|
|
241 #ACGT overview
|
|
242
|
|
243 NToverview = merged[!grepl("^unmatched", merged$best_match),]
|
|
244
|
|
245 NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq, sep="_")
|
|
246
|
|
247 NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq))
|
|
248 NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq))
|
|
249 NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq))
|
|
250 NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq))
|
|
251
|
|
252 #Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T))
|
|
253
|
|
254 #NToverview = rbind(NToverview, NTsum)
|
|
255
|
|
256 NTresult = data.frame(nt=c("A", "C", "T", "G"))
|
|
257
|
|
258 for(clazz in gene.classes){
|
|
259 NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),]
|
|
260 new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G))
|
|
261 new.col.y = sum(new.col.x)
|
|
262 new.col.z = round(new.col.x / new.col.y * 100, 2)
|
|
263
|
|
264 tmp = names(NTresult)
|
|
265 NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
|
|
266 names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep=""))
|
|
267 }
|
|
268
|
|
269 write.table(NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")], NToverview.file, quote=F, sep="\t", row.names=F, col.names=T)
|
|
270
|
|
271 NToverview = NToverview[!grepl("unmatched", NToverview$best_match),]
|
|
272
|
|
273 new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G))
|
|
274 new.col.y = sum(new.col.x)
|
|
275 new.col.z = round(new.col.x / new.col.y * 100, 2)
|
|
276
|
|
277 tmp = names(NTresult)
|
|
278 NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
|
|
279 names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep=""))
|
|
280
|
|
281 names(hotspot.analysis.sum) = names(NTresult)
|
|
282
|
|
283 hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult)
|
|
284
|
|
285 write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")
|
|
286
|
|
287
|
|
288
|
|
289
|
|
290
|
|
291
|
|
292
|
|
293
|
|
294
|
|
295
|
|
296
|
|
297
|
|
298
|
|
299
|
|
300
|
|
301
|
|
302
|
|
303
|
|
304
|
|
305
|
|
306
|
|
307
|
|
308
|
|
309
|
|
310
|
|
311
|
|
312
|
|
313
|
|
314
|
|
315
|