81
|
1 library(ggplot2)
|
|
2 library(reshape2)
|
|
3 library(scales)
|
|
4
|
|
5 args <- commandArgs(trailingOnly = TRUE)
|
|
6
|
|
7 input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt"
|
|
8
|
|
9 plot1.path = args[2]
|
|
10 plot1.png = paste(plot1.path, ".png", sep="")
|
|
11 plot1.txt = paste(plot1.path, ".txt", sep="")
|
|
12 plot1.pdf = paste(plot1.path, ".pdf", sep="")
|
|
13
|
|
14 plot2.path = args[3]
|
|
15 plot2.png = paste(plot2.path, ".png", sep="")
|
|
16 plot2.txt = paste(plot2.path, ".txt", sep="")
|
|
17 plot2.pdf = paste(plot2.path, ".pdf", sep="")
|
|
18
|
|
19 plot3.path = args[4]
|
|
20 plot3.png = paste(plot3.path, ".png", sep="")
|
|
21 plot3.txt = paste(plot3.path, ".txt", sep="")
|
|
22 plot3.pdf = paste(plot3.path, ".pdf", sep="")
|
|
23
|
|
24 clean.output = args[5]
|
|
25
|
|
26 dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1)
|
|
27
|
|
28 classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE")
|
|
29 xyz = c("x", "y", "z")
|
|
30 new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep="."))
|
|
31
|
|
32 names(dat) = new.names
|
|
33
|
|
34 clean.dat = dat
|
|
35 clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))]
|
|
36
|
|
37 write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA)
|
|
38
|
|
39 dat["RGYW.WRCY",] = colSums(dat[c(14,15),], na.rm=T)
|
|
40 dat["TW.WA",] = colSums(dat[c(16,17),], na.rm=T)
|
|
41
|
|
42 data1 = dat[c("RGYW.WRCY", "TW.WA"),]
|
|
43
|
|
44 data1 = data1[,names(data1)[grepl(".z", names(data1))]]
|
|
45 names(data1) = gsub("\\..*", "", names(data1))
|
|
46
|
|
47 data1 = melt(t(data1))
|
|
48
|
|
49 names(data1) = c("Class", "Type", "value")
|
|
50
|
|
51 chk = is.na(data1$value)
|
|
52 if(any(chk)){
|
|
53 data1[chk, "value"] = 0
|
|
54 }
|
|
55
|
|
56 data1 = data1[order(data1$Type),]
|
|
57
|
|
58 write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
|
|
59
|
|
60 p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) + ggtitle("Percentage of mutations in AID and pol eta motives")
|
|
61 p = p + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("RGYW.WRCY" = "white", "TW.WA" = "blue4"))
|
|
62 #p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4"))
|
|
63 png(filename=plot1.png, width=510, height=300)
|
|
64 print(p)
|
|
65 dev.off()
|
|
66
|
|
67 ggsave(plot1.pdf, p)
|
|
68
|
|
69 data2 = dat[c(1, 5:8),]
|
|
70
|
|
71 data2 = data2[,names(data2)[grepl("\\.x", names(data2))]]
|
|
72 names(data2) = gsub(".x", "", names(data2))
|
|
73
|
|
74 data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]]
|
|
75
|
|
76 data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1)
|
|
77
|
|
78 data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]]
|
|
79 data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1)
|
|
80
|
|
81 data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0
|
|
82 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0
|
|
83 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0
|
|
84 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0
|
|
85
|
|
86 data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),]))
|
|
87
|
|
88 names(data2) = c("Class", "Type", "value")
|
|
89
|
|
90 chk = is.na(data2$value)
|
|
91 if(any(chk)){
|
|
92 data2[chk, "value"] = 0
|
|
93 }
|
|
94
|
|
95 data2 = data2[order(data2$Type),]
|
|
96
|
|
97 write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
|
|
98
|
|
99 p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity", colour = "black") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") + ggtitle("Relative mutation patterns")
|
|
100 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
|
|
101 #p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
|
|
102 png(filename=plot2.png, width=480, height=300)
|
|
103 print(p)
|
|
104 dev.off()
|
|
105
|
|
106 ggsave(plot2.pdf, p)
|
|
107
|
|
108 data3 = dat[c(5, 6, 8, 18:21),]
|
|
109 data3 = data3[,names(data3)[grepl("\\.x", names(data3))]]
|
|
110 names(data3) = gsub(".x", "", names(data3))
|
|
111
|
|
112 data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1)
|
|
113
|
|
114 data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1)
|
|
115
|
|
116 data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1)
|
|
117
|
|
118 data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0
|
|
119 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0
|
|
120
|
|
121 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0
|
|
122 data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0
|
|
123
|
|
124 data3["A/T",is.nan(unlist(data3["A/T",]))] = 0
|
|
125 data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0
|
|
126
|
|
127 data3 = melt(t(data3[8:10,]))
|
|
128 names(data3) = c("Class", "Type", "value")
|
|
129
|
|
130 chk = is.na(data3$value)
|
|
131 if(any(chk)){
|
|
132 data3[chk, "value"] = 0
|
|
133 }
|
|
134
|
|
135 data3 = data3[order(data3$Type),]
|
|
136
|
|
137 write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
|
|
138
|
|
139 p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) + ggtitle("Absolute mutation patterns")
|
|
140 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
|
|
141 #p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
|
|
142 png(filename=plot3.png, width=480, height=300)
|
|
143 print(p)
|
|
144 dev.off()
|
|
145
|
|
146 ggsave(plot3.pdf, p)
|
|
147
|
|
148
|
|
149
|
|
150
|
|
151
|
|
152
|
|
153
|
|
154
|
|
155
|
|
156
|
|
157
|
|
158
|
|
159
|
|
160
|
|
161
|
|
162
|
|
163
|
|
164
|
|
165
|
|
166
|
|
167
|
|
168
|
|
169
|
|
170
|
|
171
|
|
172
|
|
173
|
|
174
|
|
175
|
|
176
|
|
177
|
|
178
|