Mercurial > repos > davidvanzessen > shm_csr
annotate shm_csr.r @ 95:d63eff357515 draft
planemo upload commit d96a736dcd6da34137f79861fbc6369716c332f1
author | rhpvorderman |
---|---|
date | Mon, 27 Mar 2023 13:11:53 +0000 |
parents | 8fcf31272f6e |
children |
rev | line source |
---|---|
81 | 1 library(data.table) |
2 library(ggplot2) | |
3 library(reshape2) | |
4 | |
5 args <- commandArgs(trailingOnly = TRUE) | |
6 | |
7 input = args[1] | |
8 genes = unlist(strsplit(args[2], ",")) | |
9 outputdir = args[3] | |
10 empty.region.filter = args[4] | |
11 setwd(outputdir) | |
12 | |
13 #dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | |
14 | |
15 dat = data.frame(fread(input, sep="\t", header=T, stringsAsFactors=F)) #fread because read.table suddenly skips certain rows... | |
16 | |
17 if(length(dat$Sequence.ID) == 0){ | |
18 setwd(outputdir) | |
19 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | |
20 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)") | |
21 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
22 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | |
23 row.names(transitionTable) = c("A", "C", "G", "T") | |
24 transitionTable["A","A"] = NA | |
25 transitionTable["C","C"] = NA | |
26 transitionTable["G","G"] = NA | |
27 transitionTable["T","T"] = NA | |
28 | |
29 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
30 cat("0", file="n.txt") | |
31 stop("No data") | |
32 } | |
33 | |
34 cleanup_columns = c("FR1.IMGT.c.a", | |
35 "FR2.IMGT.g.t", | |
36 "CDR1.IMGT.Nb.of.nucleotides", | |
37 "CDR2.IMGT.t.a", | |
38 "FR1.IMGT.c.g", | |
39 "CDR1.IMGT.c.t", | |
40 "FR2.IMGT.a.c", | |
41 "FR2.IMGT.Nb.of.mutations", | |
42 "FR2.IMGT.g.c", | |
43 "FR2.IMGT.a.g", | |
44 "FR3.IMGT.t.a", | |
45 "FR3.IMGT.t.c", | |
46 "FR2.IMGT.g.a", | |
47 "FR3.IMGT.c.g", | |
48 "FR1.IMGT.Nb.of.mutations", | |
49 "CDR1.IMGT.g.a", | |
50 "CDR1.IMGT.t.g", | |
51 "CDR1.IMGT.g.c", | |
52 "CDR2.IMGT.Nb.of.nucleotides", | |
53 "FR2.IMGT.a.t", | |
54 "CDR1.IMGT.Nb.of.mutations", | |
55 "CDR3.IMGT.Nb.of.nucleotides", | |
56 "CDR1.IMGT.a.g", | |
57 "FR3.IMGT.a.c", | |
58 "FR1.IMGT.g.a", | |
59 "FR3.IMGT.a.g", | |
60 "FR1.IMGT.a.t", | |
61 "CDR2.IMGT.a.g", | |
62 "CDR2.IMGT.Nb.of.mutations", | |
63 "CDR2.IMGT.g.t", | |
64 "CDR2.IMGT.a.c", | |
65 "CDR1.IMGT.t.c", | |
66 "FR3.IMGT.g.c", | |
67 "FR1.IMGT.g.t", | |
68 "FR3.IMGT.g.t", | |
69 "CDR1.IMGT.a.t", | |
70 "FR1.IMGT.a.g", | |
71 "FR3.IMGT.a.t", | |
72 "FR3.IMGT.Nb.of.nucleotides", | |
73 "FR2.IMGT.t.c", | |
74 "CDR2.IMGT.g.a", | |
75 "FR2.IMGT.t.a", | |
76 "CDR1.IMGT.t.a", | |
77 "FR2.IMGT.t.g", | |
78 "FR3.IMGT.t.g", | |
79 "FR2.IMGT.Nb.of.nucleotides", | |
80 "FR1.IMGT.t.a", | |
81 "FR1.IMGT.t.g", | |
82 "FR3.IMGT.c.t", | |
83 "FR1.IMGT.t.c", | |
84 "CDR2.IMGT.a.t", | |
85 "FR2.IMGT.c.t", | |
86 "CDR1.IMGT.g.t", | |
87 "CDR2.IMGT.t.g", | |
88 "FR1.IMGT.Nb.of.nucleotides", | |
89 "CDR1.IMGT.c.g", | |
90 "CDR2.IMGT.t.c", | |
91 "FR3.IMGT.g.a", | |
92 "CDR1.IMGT.a.c", | |
93 "FR2.IMGT.c.a", | |
94 "FR3.IMGT.Nb.of.mutations", | |
95 "FR2.IMGT.c.g", | |
96 "CDR2.IMGT.g.c", | |
97 "FR1.IMGT.g.c", | |
98 "CDR2.IMGT.c.t", | |
99 "FR3.IMGT.c.a", | |
100 "CDR1.IMGT.c.a", | |
101 "CDR2.IMGT.c.g", | |
102 "CDR2.IMGT.c.a", | |
103 "FR1.IMGT.c.t", | |
104 "FR1.IMGT.Nb.of.silent.mutations", | |
105 "FR2.IMGT.Nb.of.silent.mutations", | |
106 "FR3.IMGT.Nb.of.silent.mutations", | |
107 "FR1.IMGT.Nb.of.nonsilent.mutations", | |
108 "FR2.IMGT.Nb.of.nonsilent.mutations", | |
109 "FR3.IMGT.Nb.of.nonsilent.mutations") | |
110 | |
111 print("Cleaning up columns") | |
112 | |
113 for(col in cleanup_columns){ | |
114 dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | |
115 #dat[dat[,col] == "",] = "0" | |
116 dat[,col] = as.numeric(dat[,col]) | |
117 dat[is.na(dat[,col]),col] = 0 | |
118 } | |
119 | |
120 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | |
121 if(empty.region.filter == "FR1") { | |
122 regions = c("CDR1", "FR2", "CDR2", "FR3") | |
123 } else if (empty.region.filter == "CDR1") { | |
124 regions = c("FR2", "CDR2", "FR3") | |
125 } else if (empty.region.filter == "FR2") { | |
126 regions = c("CDR2", "FR3") | |
127 } | |
128 | |
129 pdfplots = list() #save() this later to create the pdf plots in another script (maybe avoids the "address (nil), cause memory not mapped") | |
130 | |
131 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | |
132 | |
133 print("aggregating data into new columns") | |
134 | |
135 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | |
136 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | |
137 | |
138 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | |
139 dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq) | |
140 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | |
141 | |
142 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | |
143 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | |
144 | |
145 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | |
146 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | |
147 | |
148 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | |
149 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | |
150 | |
151 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | |
152 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | |
153 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | |
154 | |
155 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | |
156 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | |
157 | |
158 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | |
159 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | |
160 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | |
161 | |
162 FRRegions = regions[grepl("FR", regions)] | |
163 CDRRegions = regions[grepl("CDR", regions)] | |
164 | |
165 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
166 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | |
167 | |
168 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
169 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | |
170 | |
171 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
172 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | |
173 | |
174 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
175 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | |
176 | |
177 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | |
178 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
179 | |
180 setwd(outputdir) | |
181 | |
182 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | |
183 | |
184 base.order.x = data.frame(base=c("A", "C", "G", "T"), order.x=1:4) | |
185 base.order.y = data.frame(base=c("T", "G", "C", "A"), order.y=1:4) | |
186 | |
187 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | |
188 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),] | |
189 | |
190 j = i - 1 | |
191 x = (j * 3) + 1 | |
192 y = (j * 3) + 2 | |
193 z = (j * 3) + 3 | |
194 | |
195 if(nrow(tmp) > 0){ | |
196 if(fname == "sum"){ | |
197 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
198 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
199 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1) | |
200 } else { | |
201 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
202 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
203 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1) | |
204 } | |
205 | |
206 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | |
207 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
208 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
209 | |
210 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | |
211 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
212 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
213 | |
214 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | |
215 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
216 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
217 | |
218 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
219 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
220 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
221 | |
222 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | |
223 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
224 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | |
225 | |
226 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
227 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
228 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
229 | |
230 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | |
231 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | |
232 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
233 | |
234 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | |
235 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | |
236 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
237 | |
238 if(fname == "sum"){ | |
239 | |
240 regions.fr = regions[grepl("FR", regions)] | |
241 regions.fr = paste(regions.fr, ".IMGT.Nb.of.nucleotides", sep="") | |
242 regions.cdr = regions[grepl("CDR", regions)] | |
243 regions.cdr = paste(regions.cdr, ".IMGT.Nb.of.nucleotides", sep="") | |
244 | |
245 if(length(regions.fr) > 1){ #in case there is only on FR region (rowSums needs >1 column) | |
246 matrx[10,x] = round(f(rowSums(tmp[,regions.fr], na.rm=T)), digits=1) | |
247 } else { | |
248 matrx[10,x] = round(f(tmp[,regions.fr], na.rm=T), digits=1) | |
249 } | |
250 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
251 matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1) | |
252 | |
253 if(length(regions.cdr) > 1){ #in case there is only on CDR region | |
254 matrx[11,x] = round(f(rowSums(tmp[,regions.cdr], na.rm=T)), digits=1) | |
255 } else { | |
256 matrx[11,x] = round(f(tmp[,regions.cdr], na.rm=T), digits=1) | |
257 } | |
258 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
259 matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1) | |
260 } | |
261 } | |
262 | |
263 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | |
264 row.names(transitionTable) = c("A", "C", "G", "T") | |
265 transitionTable["A","A"] = NA | |
266 transitionTable["C","C"] = NA | |
267 transitionTable["G","G"] = NA | |
268 transitionTable["T","T"] = NA | |
269 | |
270 if(nrow(tmp) > 0){ | |
271 for(nt1 in nts){ | |
272 for(nt2 in nts){ | |
273 if(nt1 == nt2){ | |
274 next | |
275 } | |
276 NT1 = LETTERS[letters == nt1] | |
277 NT2 = LETTERS[letters == nt2] | |
278 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
279 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
280 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
281 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
282 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
283 if (empty.region.filter == "leader"){ | |
284 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
285 } else if (empty.region.filter == "FR1") { | |
286 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
287 } else if (empty.region.filter == "CDR1") { | |
288 transitionTable[NT1,NT2] = sum(tmp[,c(FR2, CDR2, FR3)]) | |
289 } else if (empty.region.filter == "FR2") { | |
290 transitionTable[NT1,NT2] = sum(tmp[,c(CDR2, FR3)]) | |
291 } | |
292 } | |
293 } | |
294 transition = transitionTable | |
295 transition$id = names(transition) | |
296 | |
297 transition2 = melt(transition, id.vars="id") | |
298 | |
299 transition2 = merge(transition2, base.order.x, by.x="id", by.y="base") | |
300 | |
301 transition2 = merge(transition2, base.order.y, by.x="variable", by.y="base") | |
302 | |
303 transition2[is.na(transition2$value),]$value = 0 | |
304 | |
305 if(any(transition2$value != 0)){ #having a transition table filled with 0 is bad | |
306 print("Plotting heatmap and transition") | |
307 png(filename=paste("transitions_stacked_", name, ".png", sep="")) | |
308 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar | |
309 p = p + xlab("From base") + ylab("") + ggtitle("Bargraph transition information") + guides(fill=guide_legend(title=NULL)) | |
310 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) | |
311 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) | |
312 print(p) | |
313 dev.off() | |
314 | |
315 pdfplots[[paste("transitions_stacked_", name, ".pdf", sep="")]] <<- p | |
316 | |
317 png(filename=paste("transitions_heatmap_", name, ".png", sep="")) | |
318 p = ggplot(transition2, aes(factor(reorder(variable, -order.y)), factor(reorder(id, -order.x)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap | |
319 p = p + xlab("To base") + ylab("From Base") + ggtitle("Heatmap transition information") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | |
320 print(p) | |
321 dev.off() | |
322 | |
323 pdfplots[[paste("transitions_heatmap_", name, ".pdf", sep="")]] <<- p | |
324 } else { | |
325 #print("No data to plot") | |
326 } | |
327 } | |
328 | |
329 #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | |
330 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
331 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
332 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | |
333 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep="")) | |
334 #print(paste(fname, name, nrow(tmp))) | |
335 matrx | |
336 } | |
337 nts = c("a", "c", "g", "t") | |
338 zeros=rep(0, 4) | |
339 funcs = c(median, sum, mean) | |
340 fnames = c("median", "sum", "mean") | |
341 | |
342 print("Creating result tables") | |
343 | |
344 for(i in 1:length(funcs)){ | |
345 func = funcs[[i]] | |
346 fname = fnames[[i]] | |
347 | |
348 print(paste("Creating table for", fname)) | |
349 | |
350 rows = 9 | |
351 if(fname == "sum"){ | |
352 rows = 11 | |
353 } | |
354 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows) | |
355 for(i in 1:length(genes)){ | |
356 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) | |
357 } | |
358 matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all") | |
359 | |
360 result = data.frame(matrx) | |
361 if(fname == "sum"){ | |
362 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR") | |
363 } else { | |
364 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
365 } | |
366 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | |
367 } | |
368 | |
369 print("Adding median number of mutations to sum table") | |
370 sum.table = read.table("mutations_sum.txt", sep=",", header=F) | |
371 median.table = read.table("mutations_median.txt", sep=",", header=F) | |
372 | |
373 new.table = sum.table[1,] | |
374 new.table[2,] = median.table[1,] | |
375 new.table[3:12,] = sum.table[2:11,] | |
376 new.table[,1] = as.character(new.table[,1]) | |
377 new.table[2,1] = "Median of Number of Mutations (%)" | |
378 | |
379 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] | |
380 | |
381 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) | |
382 | |
383 print("Plotting IGA piechart") | |
384 | |
385 dat = dat[!grepl("^unmatched", dat$best_match),] | |
386 | |
387 #blegh | |
388 | |
389 genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match | |
390 | |
391 if(length(genesForPlot) > 0){ | |
392 genesForPlot = data.frame(table(genesForPlot)) | |
393 colnames(genesForPlot) = c("Gene","Freq") | |
394 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
395 | |
396 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | |
397 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4")) | |
398 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) | |
399 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank()) | |
400 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclass distribution", "( n =", sum(genesForPlot$Freq), ")")) | |
401 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
402 | |
403 png(filename="IGA.png") | |
404 print(pc) | |
405 dev.off() | |
406 | |
407 pdfplots[["IGA.pdf"]] <- pc | |
408 } | |
409 | |
410 print("Plotting IGG piechart") | |
411 | |
412 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match | |
413 | |
414 if(length(genesForPlot) > 0){ | |
415 genesForPlot = data.frame(table(genesForPlot)) | |
416 colnames(genesForPlot) = c("Gene","Freq") | |
417 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
418 | |
419 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | |
420 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred")) | |
421 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) | |
422 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank()) | |
423 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclass distribution", "( n =", sum(genesForPlot$Freq), ")")) | |
424 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
425 | |
426 png(filename="IGG.png") | |
427 print(pc) | |
428 dev.off() | |
429 | |
430 pdfplots[["IGG.pdf"]] <- pc | |
431 } | |
432 | |
433 print("Plotting scatterplot") | |
434 | |
435 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
436 dat.clss = dat | |
437 | |
438 dat.clss$best_match = substr(dat.clss$best_match, 0, 3) | |
439 | |
440 dat.clss = rbind(dat, dat.clss) | |
441 | |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
442 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
443 |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
444 if (nrow(dat) > 0) { |
81 | 445 p = ggplot(dat.clss, aes(best_match, percentage_mutations)) |
446 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | |
447 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | |
448 p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | |
449 p = p + scale_colour_manual(guide = guide_legend(title = "Subclass"), values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | |
450 png(filename="scatter.png") | |
451 print(p) | |
452 dev.off() | |
453 | |
454 pdfplots[["scatter.pdf"]] <- p | |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
455 } |
81 | 456 |
457 print("Plotting frequency ranges plot") | |
458 | |
459 dat$best_match_class = substr(dat$best_match, 0, 3) | |
460 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | |
461 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | |
462 | |
463 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")]) | |
464 | |
465 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | |
466 | |
467 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class") | |
468 | |
469 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | |
470 | |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
471 if (nrow(frequency_bins_data) > 0) { |
81 | 472 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency)) |
473 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | |
474 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(guide = guide_legend(title = "Class"), values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | |
475 | |
476 png(filename="frequency_ranges.png") | |
477 print(p) | |
478 dev.off() | |
479 | |
480 pdfplots[["frequency_ranges.pdf"]] <- p | |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
481 } |
81 | 482 |
483 save(pdfplots, file="pdfplots.RData") | |
484 | |
485 frequency_bins_data_by_class = frequency_bins_data | |
486 | |
487 frequency_bins_data_by_class = frequency_bins_data_by_class[order(frequency_bins_data_by_class$best_match_class, frequency_bins_data_by_class$frequency_bins),] | |
488 | |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
489 |
81 | 490 frequency_bins_data_by_class$frequency_bins = gsub("-", " to ", frequency_bins_data_by_class$frequency_bins) |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
491 if (nrow(frequency_bins_data_by_class) > 0) { |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
492 frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "20", c("frequency_bins")] = "20 or higher" |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
493 frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "0", c("frequency_bins")] = "0 or lower" |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
494 } |
81 | 495 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) |
496 | |
497 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")]) | |
498 | |
499 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match")]) | |
500 | |
501 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match") | |
502 | |
503 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | |
504 | |
505 frequency_bins_data = frequency_bins_data[order(frequency_bins_data$best_match, frequency_bins_data$frequency_bins),] | |
506 frequency_bins_data$frequency_bins = gsub("-", " to ", frequency_bins_data$frequency_bins) | |
93
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
507 if (nrow(frequency_bins_data) > 0) { |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
508 frequency_bins_data[frequency_bins_data$frequency_bins == "20", c("frequency_bins")] = "20 or higher" |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
509 frequency_bins_data[frequency_bins_data$frequency_bins == "0", c("frequency_bins")] = "0 or lower" |
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
rhpvorderman
parents:
81
diff
changeset
|
510 } |
81 | 511 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) |
512 | |
513 | |
514 | |
515 | |
516 | |
517 | |
518 | |
519 | |
520 | |
521 | |
522 | |
523 | |
524 | |
525 | |
526 | |
527 | |
528 | |
529 | |
530 | |
531 | |
532 | |
533 | |
534 | |
535 | |
536 | |
537 | |
538 | |
539 | |
540 | |
541 | |
542 | |
543 | |
544 | |
545 | |
546 | |
547 | |
548 | |
549 | |
550 | |
551 | |
552 | |
553 | |
554 | |
555 | |
556 | |
557 | |
558 | |
559 | |
560 | |
561 | |
562 | |
563 | |
564 | |
565 | |
566 | |
567 |