Mercurial > repos > davidvanzessen > shm_csr
comparison shm_csr.r @ 42:1cf60ae234b4 draft
Uploaded
author | davidvanzessen |
---|---|
date | Tue, 28 Mar 2017 08:25:36 -0400 |
parents | a24f8c93583a |
children | 77a7ac76c7b9 |
comparison
equal
deleted
inserted
replaced
41:b8ac74723ab0 | 42:1cf60ae234b4 |
---|---|
305 p = p + xlab("From base") + ylab("") + ggtitle("Bargraph transition information") + guides(fill=guide_legend(title=NULL)) | 305 p = p + xlab("From base") + ylab("") + ggtitle("Bargraph transition information") + guides(fill=guide_legend(title=NULL)) |
306 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) | 306 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) |
307 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) | 307 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) |
308 print(p) | 308 print(p) |
309 dev.off() | 309 dev.off() |
310 | |
311 ggsave(paste("transitions_stacked_", name, ".pdf", sep="")) | |
312 | |
310 png(filename=paste("transitions_heatmap_", name, ".png", sep="")) | 313 png(filename=paste("transitions_heatmap_", name, ".png", sep="")) |
311 p = ggplot(transition2, aes(factor(reorder(variable, -order.y)), factor(reorder(id, -order.x)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap | 314 p = ggplot(transition2, aes(factor(reorder(variable, -order.y)), factor(reorder(id, -order.x)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap |
312 p = p + xlab("To base") + ylab("From Base") + ggtitle("Heatmap transition information") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | 315 p = p + xlab("To base") + ylab("From Base") + ggtitle("Heatmap transition information") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) |
313 print(p) | 316 print(p) |
314 dev.off() | 317 dev.off() |
318 | |
319 ggsave(paste("transitions_heatmap_", name, ".pdf", sep="")) | |
315 } else { | 320 } else { |
316 #print("No data to plot") | 321 #print("No data to plot") |
317 } | 322 } |
318 } | 323 } |
319 | 324 |
392 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | 397 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) |
393 | 398 |
394 png(filename="IGA.png") | 399 png(filename="IGA.png") |
395 print(pc) | 400 print(pc) |
396 dev.off() | 401 dev.off() |
402 | |
403 ggsave("IGA.pdf", pc) | |
397 } | 404 } |
398 | 405 |
399 print("Plotting IGG piechart") | 406 print("Plotting IGG piechart") |
400 | 407 |
401 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match | 408 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match |
413 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | 420 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) |
414 | 421 |
415 png(filename="IGG.png") | 422 png(filename="IGG.png") |
416 print(pc) | 423 print(pc) |
417 dev.off() | 424 dev.off() |
425 | |
426 ggsave("IGG.pdf", pc) | |
418 } | 427 } |
419 | 428 |
420 print("Plotting scatterplot") | 429 print("Plotting scatterplot") |
421 | 430 |
422 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | 431 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) |
434 | 443 |
435 png(filename="scatter.png") | 444 png(filename="scatter.png") |
436 print(p) | 445 print(p) |
437 dev.off() | 446 dev.off() |
438 | 447 |
448 ggsave("scatter.pdf", p) | |
449 | |
439 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | 450 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) |
440 | 451 |
441 print("Plotting frequency ranges plot") | 452 print("Plotting frequency ranges plot") |
442 | 453 |
443 dat$best_match_class = substr(dat$best_match, 0, 3) | 454 dat$best_match_class = substr(dat$best_match, 0, 3) |
457 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(guide = guide_legend(title = "Class"), values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | 468 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(guide = guide_legend(title = "Class"), values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) |
458 | 469 |
459 png(filename="frequency_ranges.png") | 470 png(filename="frequency_ranges.png") |
460 print(p) | 471 print(p) |
461 dev.off() | 472 dev.off() |
473 | |
474 ggsave("frequency_ranges.pdf", p) | |
462 | 475 |
463 frequency_bins_data_by_class = frequency_bins_data | 476 frequency_bins_data_by_class = frequency_bins_data |
464 | 477 |
465 frequency_bins_data_by_class = frequency_bins_data_by_class[order(frequency_bins_data_by_class$best_match_class, frequency_bins_data_by_class$frequency_bins),] | 478 frequency_bins_data_by_class = frequency_bins_data_by_class[order(frequency_bins_data_by_class$best_match_class, frequency_bins_data_by_class$frequency_bins),] |
466 | 479 |