Mercurial > repos > davidvanzessen > shm_csr
comparison pattern_plots.r @ 23:81453585dfc3 draft
Uploaded
author | davidvanzessen |
---|---|
date | Thu, 01 Dec 2016 09:32:06 -0500 |
parents | 012a738edf5a |
children | 05c62efdc393 |
comparison
equal
deleted
inserted
replaced
22:0bea8c187a90 | 23:81453585dfc3 |
---|---|
16 | 16 |
17 plot3.path = args[4] | 17 plot3.path = args[4] |
18 plot3.png = paste(plot3.path, ".png", sep="") | 18 plot3.png = paste(plot3.path, ".png", sep="") |
19 plot3.txt = paste(plot3.path, ".txt", sep="") | 19 plot3.txt = paste(plot3.path, ".txt", sep="") |
20 | 20 |
21 clean.output = args[5] | |
22 | |
21 dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1) | 23 dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1) |
22 | 24 |
23 | 25 |
24 | 26 |
25 classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE") | 27 classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE") |
26 xyz = c("x", "y", "z") | 28 xyz = c("x", "y", "z") |
27 new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep=".")) | 29 new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep=".")) |
28 | 30 |
29 names(dat) = new.names | 31 names(dat) = new.names |
32 | |
33 clean.dat = dat | |
34 clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))] | |
35 | |
36 write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA) | |
30 | 37 |
31 dat["RGYW.WRCY",] = colSums(dat[c(13,14),], na.rm=T) | 38 dat["RGYW.WRCY",] = colSums(dat[c(13,14),], na.rm=T) |
32 dat["TW.WA",] = colSums(dat[c(15,16),], na.rm=T) | 39 dat["TW.WA",] = colSums(dat[c(15,16),], na.rm=T) |
33 | 40 |
34 data1 = dat[c("RGYW.WRCY", "TW.WA"),] | 41 data1 = dat[c("RGYW.WRCY", "TW.WA"),] |
49 #p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4")) | 56 #p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4")) |
50 png(filename=plot1.png, width=480, height=300) | 57 png(filename=plot1.png, width=480, height=300) |
51 print(p) | 58 print(p) |
52 dev.off() | 59 dev.off() |
53 | 60 |
54 data2 = dat[5:8,] | 61 data2 = dat[c(1, 5:8),] |
55 | |
56 data2["sum",] = colSums(data2, na.rm=T) | |
57 | 62 |
58 data2 = data2[,names(data2)[grepl("\\.x", names(data2))]] | 63 data2 = data2[,names(data2)[grepl("\\.x", names(data2))]] |
59 names(data2) = gsub(".x", "", names(data2)) | 64 names(data2) = gsub(".x", "", names(data2)) |
60 | 65 |
61 data2["A/T",] = round(colSums(data2[3:4,]) / data2["sum",] * 100, 1) | 66 data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]] |
62 data2["A/T",is.nan(unlist(data2["A/T",]))] = 0 | |
63 | 67 |
64 data2["G/C transversions",] = round(data2[2,] / data2["sum",] * 100, 1) | 68 data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1) |
65 data2["G/C transitions",] = round(data2[1,] / data2["sum",] * 100, 1) | |
66 | 69 |
70 data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]] | |
71 data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1) | |
67 | 72 |
68 data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0 | 73 data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0 |
69 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0 | 74 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0 |
70 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0 | 75 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0 |
71 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0 | 76 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0 |
72 | 77 |
73 data2 = melt(t(data2[6:8,])) | 78 data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),])) |
74 | 79 |
75 names(data2) = c("Class", "Type", "value") | 80 names(data2) = c("Class", "Type", "value") |
76 | 81 |
77 data2 = data2[order(data2$Type),] | 82 data2 = data2[order(data2$Type),] |
78 | 83 |
90 names(data3) = gsub(".x", "", names(data3)) | 95 names(data3) = gsub(".x", "", names(data3)) |
91 | 96 |
92 data3[is.na(data3)] = 0 | 97 data3[is.na(data3)] = 0 |
93 #data3[is.infinite(data3)] = 0 | 98 #data3[is.infinite(data3)] = 0 |
94 | 99 |
95 data3["G/C transitions",] = round(data3[1,] / (data3[5,] + data3[7,]) * 100, 1) | 100 data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1) |
96 | 101 |
97 data3["G/C transversions",] = round(data3[2,] / (data3[5,] + data3[7,]) * 100, 1) | 102 data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1) |
98 | 103 |
99 data3["A/T",] = round(data3[3,] / (data3[4,] + data3[6,]) * 100, 1) | 104 data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1) |
100 | 105 |
101 data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0 | 106 data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0 |
102 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0 | 107 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0 |
103 | 108 |
104 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0 | 109 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0 |