Mercurial > repos > davidvanzessen > shm_csr
comparison gene_identification.py @ 81:b6f9a640e098 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 19 Feb 2021 15:10:54 +0000 |
parents | |
children | 729738462297 |
comparison
equal
deleted
inserted
replaced
80:a4617f1d1d89 | 81:b6f9a640e098 |
---|---|
1 import re | |
2 import argparse | |
3 import time | |
4 starttime= int(time.time() * 1000) | |
5 | |
6 parser = argparse.ArgumentParser() | |
7 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") | |
8 parser.add_argument("--output", help="The annotated output file to be merged back with the summary file") | |
9 | |
10 args = parser.parse_args() | |
11 | |
12 infile = args.input | |
13 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" | |
14 output = args.output | |
15 #outfile = "identified.txt" | |
16 | |
17 dic = dict() | |
18 total = 0 | |
19 | |
20 | |
21 first = True | |
22 IDIndex = 0 | |
23 seqIndex = 0 | |
24 | |
25 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
26 for line in f: | |
27 total += 1 | |
28 linesplt = line.split("\t") | |
29 if first: | |
30 print "linesplt", linesplt | |
31 IDIndex = linesplt.index("Sequence ID") | |
32 seqIndex = linesplt.index("Sequence") | |
33 first = False | |
34 continue | |
35 | |
36 ID = linesplt[IDIndex] | |
37 if len(linesplt) < 28: #weird rows without a sequence | |
38 dic[ID] = "" | |
39 else: | |
40 dic[ID] = linesplt[seqIndex] | |
41 | |
42 print "Number of input sequences:", len(dic) | |
43 | |
44 #old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc | |
45 #old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag | |
46 | |
47 #lambda/kappa reference sequence | |
48 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg", | |
49 "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc", | |
50 "ce": "gcctccacacagagcccatccgtcttccccttgacccgctgctgcaaaaacattccctcc", | |
51 "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence | |
52 | |
53 compiledregex = {"ca": [], | |
54 "cg": [], | |
55 "ce": [], | |
56 "cm": []} | |
57 | |
58 #lambda/kappa reference sequence variable nucleotides | |
59 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} | |
60 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} | |
61 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
62 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} | |
63 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
64 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} | |
65 | |
66 #remove last snp for shorter cg sequence --- note, also change varsInCG | |
67 del cg1[132] | |
68 del cg2[132] | |
69 del cg3[132] | |
70 del cg4[132] | |
71 | |
72 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap | |
73 chunklength = 8 | |
74 | |
75 #create the chunks of the reference sequence with regular expressions for the variable nucleotides | |
76 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2): | |
77 pos = i | |
78 chunk = searchstrings["ca"][i:i+chunklength] | |
79 result = "" | |
80 varsInResult = 0 | |
81 for c in chunk: | |
82 if pos in ca1.keys(): | |
83 varsInResult += 1 | |
84 result += "[" + ca1[pos] + ca2[pos] + "]" | |
85 else: | |
86 result += c | |
87 pos += 1 | |
88 compiledregex["ca"].append((re.compile(result), varsInResult)) | |
89 | |
90 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2): | |
91 pos = i | |
92 chunk = searchstrings["cg"][i:i+chunklength] | |
93 result = "" | |
94 varsInResult = 0 | |
95 for c in chunk: | |
96 if pos in cg1.keys(): | |
97 varsInResult += 1 | |
98 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" | |
99 else: | |
100 result += c | |
101 pos += 1 | |
102 compiledregex["cg"].append((re.compile(result), varsInResult)) | |
103 | |
104 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2): | |
105 compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) | |
106 | |
107 for i in range(0, len(searchstrings["ce"]) - chunklength + 1, chunklength / 2): | |
108 compiledregex["ce"].append((re.compile(searchstrings["ce"][i:i+chunklength]), False)) | |
109 | |
110 def removeAndReturnMaxIndex(x): #simplifies a list comprehension | |
111 m = max(x) | |
112 index = x.index(m) | |
113 x[index] = 0 | |
114 return index | |
115 | |
116 | |
117 start_location = dict() | |
118 hits = dict() | |
119 alltotal = 0 | |
120 for key in compiledregex.keys(): #for ca/cg/cm/ce | |
121 regularexpressions = compiledregex[key] #get the compiled regular expressions | |
122 for ID in dic.keys()[0:]: #for every ID | |
123 if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists | |
124 hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ce_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} | |
125 currentIDHits = hits[ID] | |
126 seq = dic[ID] | |
127 lastindex = 0 | |
128 start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0) | |
129 start = [0] * (len(seq) + start_zero) | |
130 for i, regexp in enumerate(regularexpressions): #for every regular expression | |
131 relativeStartLocation = lastindex - (chunklength / 2) * i | |
132 if relativeStartLocation >= len(seq): | |
133 break | |
134 regex, hasVar = regexp | |
135 matches = regex.finditer(seq[lastindex:]) | |
136 for match in matches: #for every match with the current regex, only uses the first hit because of the break at the end of this loop | |
137 lastindex += match.start() | |
138 start[relativeStartLocation + start_zero] += 1 | |
139 if hasVar: #if the regex has a variable nt in it | |
140 chunkstart = chunklength / 2 * i #where in the reference does this chunk start | |
141 chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end | |
142 if key == "ca": #just calculate the variable nt score for 'ca', cheaper | |
143 currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) | |
144 currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) | |
145 elif key == "cg": #just calculate the variable nt score for 'cg', cheaper | |
146 currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) | |
147 currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) | |
148 currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) | |
149 currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) | |
150 else: #key == "cm" #no variable regions in 'cm' or 'ce' | |
151 pass | |
152 break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped | |
153 else: #only runs if there were no hits | |
154 continue | |
155 #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] | |
156 currentIDHits[key + "_hits"] += 1 | |
157 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1]) | |
158 #start_location[ID + "_" + key] = str(start.index(max(start))) | |
159 | |
160 | |
161 varsInCA = float(len(ca1.keys()) * 2) | |
162 varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice | |
163 varsInCM = 0 | |
164 varsInCE = 0 | |
165 | |
166 def round_int(val): | |
167 return int(round(val)) | |
168 | |
169 first = True | |
170 seq_write_count=0 | |
171 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
172 with open(output, 'w') as o: | |
173 for line in f: | |
174 total += 1 | |
175 if first: | |
176 o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
177 first = False | |
178 continue | |
179 linesplt = line.split("\t") | |
180 if linesplt[2] == "No results": | |
181 pass | |
182 ID = linesplt[1] | |
183 currentIDHits = hits[ID] | |
184 possibleca = float(len(compiledregex["ca"])) | |
185 possiblecg = float(len(compiledregex["cg"])) | |
186 possiblecm = float(len(compiledregex["cm"])) | |
187 possiblece = float(len(compiledregex["ce"])) | |
188 cahits = currentIDHits["ca_hits"] | |
189 cghits = currentIDHits["cg_hits"] | |
190 cmhits = currentIDHits["cm_hits"] | |
191 cehits = currentIDHits["ce_hits"] | |
192 if cahits >= cghits and cahits >= cmhits and cahits >= cehits: #its a ca gene | |
193 ca1hits = currentIDHits["ca1"] | |
194 ca2hits = currentIDHits["ca2"] | |
195 if ca1hits >= ca2hits: | |
196 o.write(ID + "\tIGA1\t" + str(round_int(ca1hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
197 else: | |
198 o.write(ID + "\tIGA2\t" + str(round_int(ca2hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
199 elif cghits >= cahits and cghits >= cmhits and cghits >= cehits: #its a cg gene | |
200 cg1hits = currentIDHits["cg1"] | |
201 cg2hits = currentIDHits["cg2"] | |
202 cg3hits = currentIDHits["cg3"] | |
203 cg4hits = currentIDHits["cg4"] | |
204 if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene | |
205 o.write(ID + "\tIGG1\t" + str(round_int(cg1hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
206 elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene | |
207 o.write(ID + "\tIGG2\t" + str(round_int(cg2hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
208 elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene | |
209 o.write(ID + "\tIGG3\t" + str(round_int(cg3hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
210 else: #cg4 gene | |
211 o.write(ID + "\tIGG4\t" + str(round_int(cg4hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
212 else: #its a cm or ce gene | |
213 if cmhits >= cehits: | |
214 o.write(ID + "\tIGM\t100\t" + str(round_int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n") | |
215 else: | |
216 o.write(ID + "\tIGE\t100\t" + str(round_int(cehits / possiblece * 100)) + "\t" + start_location[ID + "_ce"] + "\n") | |
217 seq_write_count += 1 | |
218 | |
219 print "Time: %i" % (int(time.time() * 1000) - starttime) | |
220 | |
221 print "Number of sequences written to file:", seq_write_count | |
222 | |
223 | |
224 | |
225 | |
226 |