Mercurial > repos > davidvanzessen > shm_csr
comparison pattern_plots.r @ 81:b6f9a640e098 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 19 Feb 2021 15:10:54 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
80:a4617f1d1d89 | 81:b6f9a640e098 |
---|---|
1 library(ggplot2) | |
2 library(reshape2) | |
3 library(scales) | |
4 | |
5 args <- commandArgs(trailingOnly = TRUE) | |
6 | |
7 input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt" | |
8 | |
9 plot1.path = args[2] | |
10 plot1.png = paste(plot1.path, ".png", sep="") | |
11 plot1.txt = paste(plot1.path, ".txt", sep="") | |
12 plot1.pdf = paste(plot1.path, ".pdf", sep="") | |
13 | |
14 plot2.path = args[3] | |
15 plot2.png = paste(plot2.path, ".png", sep="") | |
16 plot2.txt = paste(plot2.path, ".txt", sep="") | |
17 plot2.pdf = paste(plot2.path, ".pdf", sep="") | |
18 | |
19 plot3.path = args[4] | |
20 plot3.png = paste(plot3.path, ".png", sep="") | |
21 plot3.txt = paste(plot3.path, ".txt", sep="") | |
22 plot3.pdf = paste(plot3.path, ".pdf", sep="") | |
23 | |
24 clean.output = args[5] | |
25 | |
26 dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1) | |
27 | |
28 classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE") | |
29 xyz = c("x", "y", "z") | |
30 new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep=".")) | |
31 | |
32 names(dat) = new.names | |
33 | |
34 clean.dat = dat | |
35 clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))] | |
36 | |
37 write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA) | |
38 | |
39 dat["RGYW.WRCY",] = colSums(dat[c(14,15),], na.rm=T) | |
40 dat["TW.WA",] = colSums(dat[c(16,17),], na.rm=T) | |
41 | |
42 data1 = dat[c("RGYW.WRCY", "TW.WA"),] | |
43 | |
44 data1 = data1[,names(data1)[grepl(".z", names(data1))]] | |
45 names(data1) = gsub("\\..*", "", names(data1)) | |
46 | |
47 data1 = melt(t(data1)) | |
48 | |
49 names(data1) = c("Class", "Type", "value") | |
50 | |
51 chk = is.na(data1$value) | |
52 if(any(chk)){ | |
53 data1[chk, "value"] = 0 | |
54 } | |
55 | |
56 data1 = data1[order(data1$Type),] | |
57 | |
58 write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
59 | |
60 p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) + ggtitle("Percentage of mutations in AID and pol eta motives") | |
61 p = p + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("RGYW.WRCY" = "white", "TW.WA" = "blue4")) | |
62 #p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4")) | |
63 png(filename=plot1.png, width=510, height=300) | |
64 print(p) | |
65 dev.off() | |
66 | |
67 ggsave(plot1.pdf, p) | |
68 | |
69 data2 = dat[c(1, 5:8),] | |
70 | |
71 data2 = data2[,names(data2)[grepl("\\.x", names(data2))]] | |
72 names(data2) = gsub(".x", "", names(data2)) | |
73 | |
74 data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]] | |
75 | |
76 data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1) | |
77 | |
78 data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]] | |
79 data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1) | |
80 | |
81 data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0 | |
82 data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0 | |
83 data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0 | |
84 data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0 | |
85 | |
86 data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),])) | |
87 | |
88 names(data2) = c("Class", "Type", "value") | |
89 | |
90 chk = is.na(data2$value) | |
91 if(any(chk)){ | |
92 data2[chk, "value"] = 0 | |
93 } | |
94 | |
95 data2 = data2[order(data2$Type),] | |
96 | |
97 write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
98 | |
99 p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity", colour = "black") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") + ggtitle("Relative mutation patterns") | |
100 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white")) | |
101 #p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black")) | |
102 png(filename=plot2.png, width=480, height=300) | |
103 print(p) | |
104 dev.off() | |
105 | |
106 ggsave(plot2.pdf, p) | |
107 | |
108 data3 = dat[c(5, 6, 8, 18:21),] | |
109 data3 = data3[,names(data3)[grepl("\\.x", names(data3))]] | |
110 names(data3) = gsub(".x", "", names(data3)) | |
111 | |
112 data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1) | |
113 | |
114 data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1) | |
115 | |
116 data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1) | |
117 | |
118 data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0 | |
119 data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0 | |
120 | |
121 data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0 | |
122 data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0 | |
123 | |
124 data3["A/T",is.nan(unlist(data3["A/T",]))] = 0 | |
125 data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0 | |
126 | |
127 data3 = melt(t(data3[8:10,])) | |
128 names(data3) = c("Class", "Type", "value") | |
129 | |
130 chk = is.na(data3$value) | |
131 if(any(chk)){ | |
132 data3[chk, "value"] = 0 | |
133 } | |
134 | |
135 data3 = data3[order(data3$Type),] | |
136 | |
137 write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T) | |
138 | |
139 p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) + ggtitle("Absolute mutation patterns") | |
140 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white")) | |
141 #p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black")) | |
142 png(filename=plot3.png, width=480, height=300) | |
143 print(p) | |
144 dev.off() | |
145 | |
146 ggsave(plot3.pdf, p) | |
147 | |
148 | |
149 | |
150 | |
151 | |
152 | |
153 | |
154 | |
155 | |
156 | |
157 | |
158 | |
159 | |
160 | |
161 | |
162 | |
163 | |
164 | |
165 | |
166 | |
167 | |
168 | |
169 | |
170 | |
171 | |
172 | |
173 | |
174 | |
175 | |
176 | |
177 | |
178 |