Mercurial > repos > davidvanzessen > shm_csr
comparison gene_identification.py @ 0:c33d93683a09 draft
Uploaded
author | davidvanzessen |
---|---|
date | Thu, 13 Oct 2016 10:52:24 -0400 |
parents | |
children | 012a738edf5a |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c33d93683a09 |
---|---|
1 import re | |
2 import argparse | |
3 import time | |
4 starttime= int(time.time() * 1000) | |
5 | |
6 parser = argparse.ArgumentParser() | |
7 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") | |
8 parser.add_argument("--output", help="The annotated output file to be merged back with the summary file") | |
9 | |
10 args = parser.parse_args() | |
11 | |
12 infile = args.input | |
13 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" | |
14 output = args.output | |
15 #outfile = "identified.txt" | |
16 | |
17 dic = dict() | |
18 total = 0 | |
19 | |
20 | |
21 first = True | |
22 IDIndex = 0 | |
23 seqIndex = 0 | |
24 | |
25 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
26 for line in f: | |
27 total += 1 | |
28 linesplt = line.split("\t") | |
29 if first: | |
30 print "linesplt", linesplt | |
31 IDIndex = linesplt.index("Sequence ID") | |
32 seqIndex = linesplt.index("Sequence") | |
33 first = False | |
34 continue | |
35 | |
36 ID = linesplt[IDIndex] | |
37 if len(linesplt) < 28: #weird rows without a sequence | |
38 dic[ID] = "" | |
39 else: | |
40 dic[ID] = linesplt[seqIndex] | |
41 | |
42 print "Number of input sequences:", len(dic) | |
43 | |
44 #old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc | |
45 #old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag | |
46 | |
47 #lambda/kappa reference sequence | |
48 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg", | |
49 "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc", | |
50 "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence | |
51 | |
52 compiledregex = {"ca": [], | |
53 "cg": [], | |
54 "cm": []} | |
55 | |
56 #lambda/kappa reference sequence variable nucleotides | |
57 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} | |
58 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} | |
59 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
60 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} | |
61 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
62 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} | |
63 | |
64 #remove last snp for shorter cg sequence --- note, also change varsInCG | |
65 del cg1[132] | |
66 del cg2[132] | |
67 del cg3[132] | |
68 del cg4[132] | |
69 | |
70 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap | |
71 chunklength = 8 | |
72 | |
73 #create the chunks of the reference sequence with regular expressions for the variable nucleotides | |
74 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2): | |
75 pos = i | |
76 chunk = searchstrings["ca"][i:i+chunklength] | |
77 result = "" | |
78 varsInResult = 0 | |
79 for c in chunk: | |
80 if pos in ca1.keys(): | |
81 varsInResult += 1 | |
82 result += "[" + ca1[pos] + ca2[pos] + "]" | |
83 else: | |
84 result += c | |
85 pos += 1 | |
86 compiledregex["ca"].append((re.compile(result), varsInResult)) | |
87 | |
88 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2): | |
89 pos = i | |
90 chunk = searchstrings["cg"][i:i+chunklength] | |
91 result = "" | |
92 varsInResult = 0 | |
93 for c in chunk: | |
94 if pos in cg1.keys(): | |
95 varsInResult += 1 | |
96 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" | |
97 else: | |
98 result += c | |
99 pos += 1 | |
100 compiledregex["cg"].append((re.compile(result), varsInResult)) | |
101 | |
102 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2): | |
103 compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) | |
104 | |
105 | |
106 | |
107 def removeAndReturnMaxIndex(x): #simplifies a list comprehension | |
108 m = max(x) | |
109 index = x.index(m) | |
110 x[index] = 0 | |
111 return index | |
112 | |
113 | |
114 start_location = dict() | |
115 hits = dict() | |
116 alltotal = 0 | |
117 for key in compiledregex.keys(): #for ca/cg/cm | |
118 regularexpressions = compiledregex[key] #get the compiled regular expressions | |
119 for ID in dic.keys()[0:]: #for every ID | |
120 if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists | |
121 hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} | |
122 currentIDHits = hits[ID] | |
123 seq = dic[ID] | |
124 lastindex = 0 | |
125 start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0) | |
126 start = [0] * (len(seq) + start_zero) | |
127 for i, regexp in enumerate(regularexpressions): #for every regular expression | |
128 relativeStartLocation = lastindex - (chunklength / 2) * i | |
129 if relativeStartLocation >= len(seq): | |
130 break | |
131 regex, hasVar = regexp | |
132 matches = regex.finditer(seq[lastindex:]) | |
133 for match in matches: #for every match with the current regex, only uses the first hit | |
134 lastindex += match.start() | |
135 start[relativeStartLocation + start_zero] += 1 | |
136 if hasVar: #if the regex has a variable nt in it | |
137 chunkstart = chunklength / 2 * i #where in the reference does this chunk start | |
138 chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end | |
139 if key == "ca": #just calculate the variable nt score for 'ca', cheaper | |
140 currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) | |
141 currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) | |
142 elif key == "cg": #just calculate the variable nt score for 'cg', cheaper | |
143 currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) | |
144 currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) | |
145 currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) | |
146 currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) | |
147 else: #key == "cm" #no variable regions in 'cm' | |
148 pass | |
149 break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped | |
150 else: #only runs if there were no hits | |
151 continue | |
152 #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] | |
153 currentIDHits[key + "_hits"] += 1 | |
154 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1]) | |
155 #start_location[ID + "_" + key] = str(start.index(max(start))) | |
156 | |
157 | |
158 chunksInCA = len(compiledregex["ca"]) | |
159 chunksInCG = len(compiledregex["cg"]) | |
160 chunksInCM = len(compiledregex["cm"]) | |
161 requiredChunkPercentage = 0.7 | |
162 varsInCA = float(len(ca1.keys()) * 2) | |
163 varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice | |
164 varsInCM = 0 | |
165 | |
166 | |
167 | |
168 first = True | |
169 seq_write_count=0 | |
170 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
171 with open(output, 'w') as o: | |
172 for line in f: | |
173 total += 1 | |
174 if first: | |
175 o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
176 first = False | |
177 continue | |
178 linesplt = line.split("\t") | |
179 if linesplt[2] == "No results": | |
180 pass | |
181 ID = linesplt[1] | |
182 currentIDHits = hits[ID] | |
183 possibleca = float(len(compiledregex["ca"])) | |
184 possiblecg = float(len(compiledregex["cg"])) | |
185 possiblecm = float(len(compiledregex["cm"])) | |
186 cahits = currentIDHits["ca_hits"] | |
187 cghits = currentIDHits["cg_hits"] | |
188 cmhits = currentIDHits["cm_hits"] | |
189 if cahits >= cghits and cahits >= cmhits: #its a ca gene | |
190 ca1hits = currentIDHits["ca1"] | |
191 ca2hits = currentIDHits["ca2"] | |
192 if ca1hits >= ca2hits: | |
193 o.write(ID + "\tIGA1\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
194 else: | |
195 o.write(ID + "\tIGA2\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
196 elif cghits >= cahits and cghits >= cmhits: #its a cg gene | |
197 cg1hits = currentIDHits["cg1"] | |
198 cg2hits = currentIDHits["cg2"] | |
199 cg3hits = currentIDHits["cg3"] | |
200 cg4hits = currentIDHits["cg4"] | |
201 if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene | |
202 o.write(ID + "\tIGG1\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
203 elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene | |
204 o.write(ID + "\tIGG2\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
205 elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene | |
206 o.write(ID + "\tIGG3\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
207 else: #cg4 gene | |
208 o.write(ID + "\tIGG4\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
209 else: #its a cm gene | |
210 o.write(ID + "\tIGM\t100\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
211 seq_write_count += 1 | |
212 | |
213 print "Time: %i" % (int(time.time() * 1000) - starttime) | |
214 | |
215 print "Number of sequences written to file:", seq_write_count | |
216 | |
217 | |
218 | |
219 | |
220 |