Mercurial > repos > davidvanzessen > shm_csr
comparison shm_csr.r @ 0:c33d93683a09 draft
Uploaded
author | davidvanzessen |
---|---|
date | Thu, 13 Oct 2016 10:52:24 -0400 |
parents | |
children | faae21ba5c63 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c33d93683a09 |
---|---|
1 library(data.table) | |
2 library(ggplot2) | |
3 library(reshape2) | |
4 | |
5 args <- commandArgs(trailingOnly = TRUE) | |
6 | |
7 input = args[1] | |
8 genes = unlist(strsplit(args[2], ",")) | |
9 outputdir = args[3] | |
10 include_fr1 = ifelse(args[4] == "yes", T, F) | |
11 setwd(outputdir) | |
12 | |
13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | |
14 | |
15 if(length(dat$Sequence.ID) == 0){ | |
16 setwd(outputdir) | |
17 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | |
18 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)") | |
19 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
20 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | |
21 row.names(transitionTable) = c("A", "C", "G", "T") | |
22 transitionTable["A","A"] = NA | |
23 transitionTable["C","C"] = NA | |
24 transitionTable["G","G"] = NA | |
25 transitionTable["T","T"] = NA | |
26 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
27 cat("0", file="n.txt") | |
28 stop("No data") | |
29 } | |
30 | |
31 cleanup_columns = c("FR1.IMGT.c.a", | |
32 "FR2.IMGT.g.t", | |
33 "CDR1.IMGT.Nb.of.nucleotides", | |
34 "CDR2.IMGT.t.a", | |
35 "FR1.IMGT.c.g", | |
36 "CDR1.IMGT.c.t", | |
37 "FR2.IMGT.a.c", | |
38 "FR2.IMGT.Nb.of.mutations", | |
39 "FR2.IMGT.g.c", | |
40 "FR2.IMGT.a.g", | |
41 "FR3.IMGT.t.a", | |
42 "FR3.IMGT.t.c", | |
43 "FR2.IMGT.g.a", | |
44 "FR3.IMGT.c.g", | |
45 "FR1.IMGT.Nb.of.mutations", | |
46 "CDR1.IMGT.g.a", | |
47 "CDR1.IMGT.t.g", | |
48 "CDR1.IMGT.g.c", | |
49 "CDR2.IMGT.Nb.of.nucleotides", | |
50 "FR2.IMGT.a.t", | |
51 "CDR1.IMGT.Nb.of.mutations", | |
52 "CDR3.IMGT.Nb.of.nucleotides", | |
53 "CDR1.IMGT.a.g", | |
54 "FR3.IMGT.a.c", | |
55 "FR1.IMGT.g.a", | |
56 "FR3.IMGT.a.g", | |
57 "FR1.IMGT.a.t", | |
58 "CDR2.IMGT.a.g", | |
59 "CDR2.IMGT.Nb.of.mutations", | |
60 "CDR2.IMGT.g.t", | |
61 "CDR2.IMGT.a.c", | |
62 "CDR1.IMGT.t.c", | |
63 "FR3.IMGT.g.c", | |
64 "FR1.IMGT.g.t", | |
65 "FR3.IMGT.g.t", | |
66 "CDR1.IMGT.a.t", | |
67 "FR1.IMGT.a.g", | |
68 "FR3.IMGT.a.t", | |
69 "FR3.IMGT.Nb.of.nucleotides", | |
70 "FR2.IMGT.t.c", | |
71 "CDR2.IMGT.g.a", | |
72 "FR2.IMGT.t.a", | |
73 "CDR1.IMGT.t.a", | |
74 "FR2.IMGT.t.g", | |
75 "FR3.IMGT.t.g", | |
76 "FR2.IMGT.Nb.of.nucleotides", | |
77 "FR1.IMGT.t.a", | |
78 "FR1.IMGT.t.g", | |
79 "FR3.IMGT.c.t", | |
80 "FR1.IMGT.t.c", | |
81 "CDR2.IMGT.a.t", | |
82 "FR2.IMGT.c.t", | |
83 "CDR1.IMGT.g.t", | |
84 "CDR2.IMGT.t.g", | |
85 "FR1.IMGT.Nb.of.nucleotides", | |
86 "CDR1.IMGT.c.g", | |
87 "CDR2.IMGT.t.c", | |
88 "FR3.IMGT.g.a", | |
89 "CDR1.IMGT.a.c", | |
90 "FR2.IMGT.c.a", | |
91 "FR3.IMGT.Nb.of.mutations", | |
92 "FR2.IMGT.c.g", | |
93 "CDR2.IMGT.g.c", | |
94 "FR1.IMGT.g.c", | |
95 "CDR2.IMGT.c.t", | |
96 "FR3.IMGT.c.a", | |
97 "CDR1.IMGT.c.a", | |
98 "CDR2.IMGT.c.g", | |
99 "CDR2.IMGT.c.a", | |
100 "FR1.IMGT.c.t", | |
101 "FR1.IMGT.Nb.of.silent.mutations", | |
102 "FR2.IMGT.Nb.of.silent.mutations", | |
103 "FR3.IMGT.Nb.of.silent.mutations", | |
104 "FR1.IMGT.Nb.of.nonsilent.mutations", | |
105 "FR2.IMGT.Nb.of.nonsilent.mutations", | |
106 "FR3.IMGT.Nb.of.nonsilent.mutations") | |
107 | |
108 | |
109 print("Cleaning up columns") | |
110 for(col in cleanup_columns){ | |
111 dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | |
112 #dat[dat[,col] == "",] = "0" | |
113 dat[,col] = as.numeric(dat[,col]) | |
114 dat[is.na(dat[,col]),col] = 0 | |
115 } | |
116 | |
117 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | |
118 if(!include_fr1){ | |
119 regions = c("CDR1", "FR2", "CDR2", "FR3") | |
120 } | |
121 | |
122 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | |
123 | |
124 print("aggregating data into new columns") | |
125 | |
126 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | |
127 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | |
128 | |
129 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | |
130 dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq) | |
131 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | |
132 | |
133 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | |
134 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | |
135 | |
136 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | |
137 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | |
138 | |
139 | |
140 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | |
141 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | |
142 | |
143 | |
144 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | |
145 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | |
146 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | |
147 | |
148 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | |
149 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | |
150 | |
151 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | |
152 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | |
153 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | |
154 | |
155 | |
156 FRRegions = regions[grepl("FR", regions)] | |
157 CDRRegions = regions[grepl("CDR", regions)] | |
158 | |
159 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
160 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | |
161 | |
162 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
163 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | |
164 | |
165 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
166 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | |
167 | |
168 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
169 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | |
170 | |
171 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | |
172 | |
173 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
174 | |
175 setwd(outputdir) | |
176 | |
177 base.order = data.frame(base=c("A", "T", "C", "G"), order=1:4) | |
178 | |
179 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | |
180 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),] | |
181 | |
182 j = i - 1 | |
183 x = (j * 3) + 1 | |
184 y = (j * 3) + 2 | |
185 z = (j * 3) + 3 | |
186 | |
187 if(nrow(tmp) > 0){ | |
188 | |
189 if(fname == "sum"){ | |
190 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
191 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
192 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1) | |
193 } else { | |
194 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
195 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
196 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1) | |
197 } | |
198 | |
199 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | |
200 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
201 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
202 | |
203 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | |
204 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
205 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
206 | |
207 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | |
208 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
209 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
210 | |
211 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
212 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
213 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
214 | |
215 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | |
216 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
217 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | |
218 | |
219 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
220 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
221 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
222 | |
223 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | |
224 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | |
225 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
226 | |
227 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | |
228 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | |
229 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
230 | |
231 if(fname == "sum"){ | |
232 matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) | |
233 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
234 matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1) | |
235 | |
236 matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) | |
237 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
238 matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1) | |
239 } | |
240 } | |
241 | |
242 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | |
243 row.names(transitionTable) = c("A", "C", "G", "T") | |
244 transitionTable["A","A"] = NA | |
245 transitionTable["C","C"] = NA | |
246 transitionTable["G","G"] = NA | |
247 transitionTable["T","T"] = NA | |
248 | |
249 if(nrow(tmp) > 0){ | |
250 for(nt1 in nts){ | |
251 for(nt2 in nts){ | |
252 if(nt1 == nt2){ | |
253 next | |
254 } | |
255 NT1 = LETTERS[letters == nt1] | |
256 NT2 = LETTERS[letters == nt2] | |
257 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
258 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
259 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
260 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
261 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
262 if(include_fr1){ | |
263 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
264 } else { | |
265 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
266 } | |
267 } | |
268 } | |
269 transition = transitionTable | |
270 transition$id = names(transition) | |
271 | |
272 transition2 = melt(transition, id.vars="id") | |
273 | |
274 transition2 = merge(transition2, base.order, by.x="id", by.y="base") | |
275 transition2 = merge(transition2, base.order, by.x="variable", by.y="base") | |
276 | |
277 transition2[is.na(transition2$value),]$value = 0 | |
278 | |
279 if(!all(transition2$value == 0)){ #having rows of data but a transition table filled with 0 is bad | |
280 | |
281 print("Plotting stacked transition") | |
282 | |
283 png(filename=paste("transitions_stacked_", name, ".png", sep="")) | |
284 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar | |
285 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL)) | |
286 p = p + theme(panel.background = element_rect(fill = "white", colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) | |
287 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) | |
288 print(p) | |
289 dev.off() | |
290 | |
291 print("Plotting heatmap transition") | |
292 | |
293 png(filename=paste("transitions_heatmap_", name, ".png", sep="")) | |
294 p = ggplot(transition2, aes(factor(reorder(id, order.x)), factor(reorder(variable, order.y)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap | |
295 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + theme(panel.background = element_rect(fill = "white", colour="black")) | |
296 print(p) | |
297 dev.off() | |
298 } else { | |
299 print("No data to plot") | |
300 } | |
301 } | |
302 | |
303 #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | |
304 | |
305 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
306 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
307 | |
308 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | |
309 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep="")) | |
310 | |
311 #print(paste(fname, name, nrow(tmp))) | |
312 | |
313 matrx | |
314 } | |
315 | |
316 nts = c("a", "c", "g", "t") | |
317 zeros=rep(0, 4) | |
318 | |
319 funcs = c(median, sum, mean) | |
320 fnames = c("median", "sum", "mean") | |
321 | |
322 print("Creating result tables") | |
323 | |
324 for(i in 1:length(funcs)){ | |
325 func = funcs[[i]] | |
326 fname = fnames[[i]] | |
327 | |
328 rows = 9 | |
329 if(fname == "sum"){ | |
330 rows = 11 | |
331 } | |
332 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows) | |
333 | |
334 for(i in 1:length(genes)){ | |
335 print(paste("Creating table for", fname, genes[i])) | |
336 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) | |
337 } | |
338 | |
339 matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all") | |
340 | |
341 result = data.frame(matrx) | |
342 if(fname == "sum"){ | |
343 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR") | |
344 } else { | |
345 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
346 } | |
347 | |
348 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | |
349 } | |
350 | |
351 print("Adding median number of mutations to sum table") | |
352 | |
353 sum.table = read.table("mutations_sum.txt", sep=",", header=F) | |
354 median.table = read.table("mutations_median.txt", sep=",", header=F) | |
355 | |
356 new.table = sum.table[1,] | |
357 new.table[2,] = median.table[1,] | |
358 new.table[3:12,] = sum.table[2:11,] | |
359 new.table[,1] = as.character(new.table[,1]) | |
360 new.table[2,1] = "Median of Number of Mutations (%)" | |
361 | |
362 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] | |
363 | |
364 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) | |
365 | |
366 | |
367 print("Plotting IGA piechart") | |
368 | |
369 dat = dat[!grepl("^unmatched", dat$best_match),] | |
370 | |
371 #blegh | |
372 genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match | |
373 if(length(genesForPlot) > 0){ | |
374 genesForPlot = data.frame(table(genesForPlot)) | |
375 colnames(genesForPlot) = c("Gene","Freq") | |
376 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
377 | |
378 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | |
379 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4")) | |
380 pc = pc + coord_polar(theta="y") | |
381 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black")) | |
382 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
383 write.table(genesForPlot, "IGA.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
384 | |
385 png(filename="IGA.png") | |
386 print(pc) | |
387 dev.off() | |
388 } | |
389 | |
390 print("Plotting IGG piechart") | |
391 | |
392 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match | |
393 if(length(genesForPlot) > 0){ | |
394 genesForPlot = data.frame(table(genesForPlot)) | |
395 colnames(genesForPlot) = c("Gene","Freq") | |
396 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
397 | |
398 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | |
399 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred")) | |
400 pc = pc + coord_polar(theta="y") | |
401 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black")) | |
402 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
403 write.table(genesForPlot, "IGG.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
404 | |
405 png(filename="IGG.png") | |
406 print(pc) | |
407 dev.off() | |
408 } | |
409 | |
410 | |
411 print("Plotting scatterplot") | |
412 | |
413 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
414 | |
415 p = ggplot(dat, aes(best_match, percentage_mutations)) | |
416 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | |
417 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black")) | |
418 p = p + scale_fill_manual(values=c("IGA1" = "lightblue1", "IGA2" = "blue4", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "black")) | |
419 p = p + scale_colour_manual(values=c("IGA1" = "lightblue1", "IGA2" = "blue4", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "black")) | |
420 | |
421 png(filename="scatter.png") | |
422 print(p) | |
423 dev.off() | |
424 | |
425 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
426 | |
427 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | |
428 | |
429 | |
430 print("Plotting frequency ranges plot") | |
431 | |
432 dat$best_match_class = substr(dat$best_match, 0, 3) | |
433 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | |
434 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | |
435 | |
436 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")]) | |
437 | |
438 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | |
439 | |
440 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class") | |
441 | |
442 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | |
443 | |
444 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency)) | |
445 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black")) | |
446 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "black")) | |
447 | |
448 png(filename="frequency_ranges.png") | |
449 print(p) | |
450 dev.off() | |
451 | |
452 frequency_bins_data_by_class = frequency_bins_data | |
453 | |
454 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
455 | |
456 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")]) | |
457 | |
458 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class") | |
459 | |
460 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | |
461 | |
462 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
463 | |
464 | |
465 #frequency_bins_data_by_class | |
466 #frequency_ranges_subclasses.txt | |
467 | |
468 | |
469 | |
470 | |
471 | |
472 | |
473 | |
474 | |
475 | |
476 | |
477 | |
478 | |
479 | |
480 | |
481 | |
482 | |
483 | |
484 | |
485 | |
486 | |
487 | |
488 | |
489 | |
490 | |
491 | |
492 | |
493 |