Mercurial > repos > davidvanzessen > shm_csr
diff gene_identification.py @ 0:c33d93683a09 draft
Uploaded
author | davidvanzessen |
---|---|
date | Thu, 13 Oct 2016 10:52:24 -0400 |
parents | |
children | 012a738edf5a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gene_identification.py Thu Oct 13 10:52:24 2016 -0400 @@ -0,0 +1,220 @@ +import re +import argparse +import time +starttime= int(time.time() * 1000) + +parser = argparse.ArgumentParser() +parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") +parser.add_argument("--output", help="The annotated output file to be merged back with the summary file") + +args = parser.parse_args() + +infile = args.input +#infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" +output = args.output +#outfile = "identified.txt" + +dic = dict() +total = 0 + + +first = True +IDIndex = 0 +seqIndex = 0 + +with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence + for line in f: + total += 1 + linesplt = line.split("\t") + if first: + print "linesplt", linesplt + IDIndex = linesplt.index("Sequence ID") + seqIndex = linesplt.index("Sequence") + first = False + continue + + ID = linesplt[IDIndex] + if len(linesplt) < 28: #weird rows without a sequence + dic[ID] = "" + else: + dic[ID] = linesplt[seqIndex] + +print "Number of input sequences:", len(dic) + +#old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc +#old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag + +#lambda/kappa reference sequence +searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg", + "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc", + "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence + +compiledregex = {"ca": [], + "cg": [], + "cm": []} + +#lambda/kappa reference sequence variable nucleotides +ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} +ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} +cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} +cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} +cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} +cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} + +#remove last snp for shorter cg sequence --- note, also change varsInCG +del cg1[132] +del cg2[132] +del cg3[132] +del cg4[132] + +#reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap +chunklength = 8 + +#create the chunks of the reference sequence with regular expressions for the variable nucleotides +for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2): + pos = i + chunk = searchstrings["ca"][i:i+chunklength] + result = "" + varsInResult = 0 + for c in chunk: + if pos in ca1.keys(): + varsInResult += 1 + result += "[" + ca1[pos] + ca2[pos] + "]" + else: + result += c + pos += 1 + compiledregex["ca"].append((re.compile(result), varsInResult)) + +for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2): + pos = i + chunk = searchstrings["cg"][i:i+chunklength] + result = "" + varsInResult = 0 + for c in chunk: + if pos in cg1.keys(): + varsInResult += 1 + result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" + else: + result += c + pos += 1 + compiledregex["cg"].append((re.compile(result), varsInResult)) + +for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2): + compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) + + + +def removeAndReturnMaxIndex(x): #simplifies a list comprehension + m = max(x) + index = x.index(m) + x[index] = 0 + return index + + +start_location = dict() +hits = dict() +alltotal = 0 +for key in compiledregex.keys(): #for ca/cg/cm + regularexpressions = compiledregex[key] #get the compiled regular expressions + for ID in dic.keys()[0:]: #for every ID + if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists + hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} + currentIDHits = hits[ID] + seq = dic[ID] + lastindex = 0 + start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0) + start = [0] * (len(seq) + start_zero) + for i, regexp in enumerate(regularexpressions): #for every regular expression + relativeStartLocation = lastindex - (chunklength / 2) * i + if relativeStartLocation >= len(seq): + break + regex, hasVar = regexp + matches = regex.finditer(seq[lastindex:]) + for match in matches: #for every match with the current regex, only uses the first hit + lastindex += match.start() + start[relativeStartLocation + start_zero] += 1 + if hasVar: #if the regex has a variable nt in it + chunkstart = chunklength / 2 * i #where in the reference does this chunk start + chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end + if key == "ca": #just calculate the variable nt score for 'ca', cheaper + currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) + currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) + elif key == "cg": #just calculate the variable nt score for 'cg', cheaper + currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) + currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) + currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) + currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) + else: #key == "cm" #no variable regions in 'cm' + pass + break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped + else: #only runs if there were no hits + continue + #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] + currentIDHits[key + "_hits"] += 1 + start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1]) + #start_location[ID + "_" + key] = str(start.index(max(start))) + + +chunksInCA = len(compiledregex["ca"]) +chunksInCG = len(compiledregex["cg"]) +chunksInCM = len(compiledregex["cm"]) +requiredChunkPercentage = 0.7 +varsInCA = float(len(ca1.keys()) * 2) +varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice +varsInCM = 0 + + + +first = True +seq_write_count=0 +with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence + with open(output, 'w') as o: + for line in f: + total += 1 + if first: + o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") + first = False + continue + linesplt = line.split("\t") + if linesplt[2] == "No results": + pass + ID = linesplt[1] + currentIDHits = hits[ID] + possibleca = float(len(compiledregex["ca"])) + possiblecg = float(len(compiledregex["cg"])) + possiblecm = float(len(compiledregex["cm"])) + cahits = currentIDHits["ca_hits"] + cghits = currentIDHits["cg_hits"] + cmhits = currentIDHits["cm_hits"] + if cahits >= cghits and cahits >= cmhits: #its a ca gene + ca1hits = currentIDHits["ca1"] + ca2hits = currentIDHits["ca2"] + if ca1hits >= ca2hits: + o.write(ID + "\tIGA1\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") + else: + o.write(ID + "\tIGA2\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") + elif cghits >= cahits and cghits >= cmhits: #its a cg gene + cg1hits = currentIDHits["cg1"] + cg2hits = currentIDHits["cg2"] + cg3hits = currentIDHits["cg3"] + cg4hits = currentIDHits["cg4"] + if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene + o.write(ID + "\tIGG1\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") + elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene + o.write(ID + "\tIGG2\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") + elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene + o.write(ID + "\tIGG3\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") + else: #cg4 gene + o.write(ID + "\tIGG4\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") + else: #its a cm gene + o.write(ID + "\tIGM\t100\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cg"] + "\n") + seq_write_count += 1 + +print "Time: %i" % (int(time.time() * 1000) - starttime) + +print "Number of sequences written to file:", seq_write_count + + + + +