Mercurial > repos > davidvanzessen > shm_csr
view sequence_overview.py @ 93:8fcf31272f6e draft
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
author | rhpvorderman |
---|---|
date | Mon, 06 Mar 2023 11:36:32 +0000 |
parents | cf8ad181628f |
children | 84e9e5c8c101 |
line wrap: on
line source
#!/usr/bin/env/python3 """Create a HTML sequence overview""" import argparse import os import typing from collections import defaultdict from pathlib import Path from typing import Dict, Iterable, List class SequenceTableRow(typing.NamedTuple): sequence_id: str sequence: str best_match: str functionality: str class SequenceStats: __slots__ = ("counts", "table_rows") def __init__(self): self.counts: Dict[str, int] = { "IGA1": 0, "IGA2": 0, "IGE": 0, "IGG1": 0, "IGG2": 0, "IGG3": 0, "IGG4": 0, "IGM": 0, "unmatched": 0, "all": 0, } self.table_rows: List[SequenceTableRow] = [] def get_sequence_stats(before_unique: str, sequence_columns: List[str]): sequence_statistics = defaultdict(SequenceStats) with open(before_unique, "rt") as table: header = next(table) header_columns = header.strip("\n").split("\t") for line in table: values = line.strip("\n").split("\t") row_dict = dict(zip(header_columns, values)) sequence = " ".join(row_dict[column] for column in sequence_columns) best_match = row_dict["best_match"] original_match = best_match if best_match.startswith("unmatched"): best_match = "unmatched" sequence_statistics[sequence].counts[best_match] += 1 functionality = row_dict["Functionality"] sequence_statistics[sequence].table_rows.append( SequenceTableRow(row_dict["Sequence.ID"], sequence, original_match, functionality)) return sequence_statistics def get_background_color(value: str): if value in ("TRUE", "T"): return "#eafaf1" elif value in ("FALSE", "F"): return "#f9ebea" try: flt = float(value) except ValueError: return "white" if flt > 0: return "#eaecee" return "white" def td(val): return f"<td bgcolor='{get_background_color(val)}'>{val}</td>" def tr(val: Iterable[str]): return f"<tr>{''.join(td(v) for v in val)}</tr>\n" def make_link(link, val): return f"<a href='{link}'>{val}</a>" def tbl(df: Iterable[Iterable[str]]): return f"<table border='1'>{''.join(tr(v) for v in df)}</table>\n" def to_bool_str(cond): return "TRUE" if cond else "FALSE" def sequence_overview(before_unique: str, outdir: str, empty_region_filter: str): os.makedirs(outdir, exist_ok=True) sequence_columns = [ "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq"] if empty_region_filter == "leader": sequence_columns = sequence_columns elif empty_region_filter == "FR1": sequence_columns = sequence_columns[1:] elif empty_region_filter == "CDR1": sequence_columns = sequence_columns[2:] elif empty_region_filter == "FR2": sequence_columns = sequence_columns[3:] else: raise ValueError(f"Unknown region filter: {empty_region_filter}") main_html_file = os.path.join(outdir, "index.html") by_id_file = os.path.join(outdir, "by_id.html") with open(main_html_file, "wt") as main_html, open(by_id_file, "wt") as by_id: main_html.write("<center><img src='data:image/png;base64," "iVBORw0KGgoAAAANSUhEUgAAAA8AAAAPCAYAAAA71pVKAAAAzElEQ" "VQoka2TwQ2CQBBFpwTshw4ImW8ogJMlUIMmhNCDxgasAi50oSXA8X" "lAjCG7aqKTzGX/vsnM31mzR0gk7tTudO5MEizpzvQ4ryUSe408J3X" "n+grE0p1rnpOamVmWsZG4rS+dzzAMsN8Hi9yyjI1JNGtxu4VxBJgL" "RLpoTKIPiW0LlwtUVRTubW2OBGUJu92cZRmdfbKQMAw8o+vi5v0fL" "orZ7Y9waGYJjsf38DJz0O1PsEQffOcv4Sa6YYfDDJ5Obzbsp93+5Vf" "dATueO1fdLdI0AAAAAElFTkSuQmCC'" "> Please note that this tab is based on all " "sequences before filter unique sequences and the " "remove duplicates based on filters are applied. In " "this table only sequences occuring more than once " "are included. </center>") main_html.write("<table border='1' class='pure-table pure-table-striped'>") main_html.write(f"<caption>" f"{'+'.join(column.split('.')[0] for column in sequence_columns)} sequences " f"that show up more than once</caption>") main_html.write("<tr>") main_html.write("<th>Sequence</th><th>Functionality</th><th>IGA1</th>" "<th>IGA2</th><th>IGG1</th><th>IGG2</th><th>IGG3</th>" "<th>IGG4</th><th>IGM</th><th>IGE</th><th>UN</th>") main_html.write("<th>total IGA</th><th>total IGG</th><th>total IGM</th>" "<th>total IGE</th><th>number of subclasses</th>" "<th>present in both IGA and IGG</th>" "<th>present in IGA, IGG and IGM</th>" "<th>present in IGA, IGG and IGE</th>" "<th>present in IGA, IGG, IGM and IGE</th>" "<th>IGA1+IGA2</th>") main_html.write("<th>IGG1+IGG2</th><th>IGG1+IGG3</th>" "<th>IGG1+IGG4</th><th>IGG2+IGG3</th>" "<th>IGG2+IGG4</th><th>IGG3+IGG4</th>") main_html.write("<th>IGG1+IGG2+IGG3</th><th>IGG2+IGG3+IGG4</th>" "<th>IGG1+IGG2+IGG4</th><th>IGG1+IGG3+IGG4</th>" "<th>IGG1+IGG2+IGG3+IGG4</th>") main_html.write("</tr>\n") sequence_stats = get_sequence_stats(before_unique, sequence_columns) sorted_sequences = sorted(sequence_stats.keys()) single_sequences = 0 # sequence only found once, skipped in_multiple = 0 # same sequence across multiple subclasses multiple_in_one = 0 # same sequence multiple times in one subclass unmatched = 0 # all the sequences are unmatched some_unmatched = 0 # one or more sequences in a clone are unmatched matched = 0 # should be the same als matched sequences for i, sequence in enumerate(sorted_sequences, start=1): sequence_stat: SequenceStats = sequence_stats[sequence] count_dict = sequence_stat.counts class_sum = sum(count_dict.values()) if class_sum == 1: single_sequences += 1 continue if count_dict["unmatched"] == class_sum: unmatched += 1 continue in_classes = sum(1 for key, value in count_dict.items() if value > 0 and key != "unmatched") matched += in_classes if any(value == class_sum for value in count_dict.values()): multiple_in_one += 1 elif count_dict["unmatched"] > 0: some_unmatched += 1 else: in_multiple += 1 # Use a dict so we can preserve the order and get all the unique # items. With a set the order is not preserved. functionality_dict = {row.functionality: None for row in sequence_stat.table_rows} functionality = ",".join(functionality_dict.keys()) links: Dict[str, str] = {} for key, value in count_dict.items(): name_key = "un" if key == "unmatched" else key html_file = f"{name_key}_{i}.html" links[key] = html_file if value > 0: rows = [row for row in sequence_stat.table_rows # Startswith to also get unmatched columns if row.best_match.startswith(key)] Path(outdir, html_file).write_text(tbl(rows)) for row in rows: by_id.write(make_link(html_file, row.sequence_id) + "<br />\n") iga_count = count_dict["IGA1"] + count_dict["IGA2"] igg_count = count_dict["IGG1"] + count_dict["IGG2"] + \ count_dict["IGG3"] + count_dict["IGG4"] contained_classes = set(key for key, value in count_dict.items() if value > 0) if iga_count: contained_classes.add("IGA") if igg_count: contained_classes.add("IGG") main_row = [ sequence, functionality, make_link(links["IGA1"], count_dict["IGA1"]), make_link(links["IGA2"], count_dict["IGA2"]), make_link(links["IGG1"], count_dict["IGG1"]), make_link(links["IGG2"], count_dict["IGG2"]), make_link(links["IGG3"], count_dict["IGG3"]), make_link(links["IGG4"], count_dict["IGG4"]), make_link(links["IGM"], count_dict["IGM"]), make_link(links["IGE"], count_dict["IGE"]), make_link(links["unmatched"], count_dict["unmatched"]), iga_count, igg_count, count_dict["IGM"], count_dict["IGE"], in_classes, to_bool_str({"IGA", "IGG"}.issubset(contained_classes)), to_bool_str({"IGA", "IGG", "IGM"}.issubset(contained_classes)), to_bool_str({"IGA", "IGG", "IGE"}.issubset(contained_classes)), to_bool_str({"IGA", "IGG", "IGM", "IGE"}.issubset(contained_classes)), to_bool_str({"IGA1", "IGA2"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG2"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG3"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG4"}.issubset(contained_classes)), to_bool_str({"IGG2", "IGG3"}.issubset(contained_classes)), to_bool_str({"IGG2", "IGG4"}.issubset(contained_classes)), to_bool_str({"IGG3", "IGG4"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG2", "IGG3"}.issubset(contained_classes)), to_bool_str({"IGG2", "IGG3", "IGG4"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG2", "IGG4"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG3", "IGG4"}.issubset(contained_classes)), to_bool_str({"IGG1", "IGG2", "IGG3", "IGG4"}.issubset(contained_classes)), ] main_html.write(tr(main_row)) main_html.write("</table>") def argument_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument("--before-unique", help="File with the overview before unique filters") parser.add_argument("--outdir", help="Output directory") parser.add_argument("--empty-region-filter") return parser def main(): args = argument_parser().parse_args() sequence_overview(args.before_unique, args.outdir, args.empty_region_filter) if __name__ == "__main__": main()