Mercurial > repos > davidvanzessen > shm_csr
view sequence_overview.r @ 64:c6dd3215ebe0 draft
Uploaded
author | davidvanzessen |
---|---|
date | Wed, 06 Dec 2017 08:52:00 -0500 |
parents | cfc9a442e59d |
children |
line wrap: on
line source
library(reshape2) args <- commandArgs(trailingOnly = TRUE) before.unique.file = args[1] merged.file = args[2] outputdir = args[3] gene.classes = unlist(strsplit(args[4], ",")) hotspot.analysis.sum.file = args[5] NToverview.file = paste(outputdir, "ntoverview.txt", sep="/") NTsum.file = paste(outputdir, "ntsum.txt", sep="/") main.html = "index.html" empty.region.filter = args[6] setwd(outputdir) before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="") merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="") hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="") #before.unique = before.unique[!grepl("unmatched", before.unique$best_match),] if(empty.region.filter == "leader"){ before.unique$seq_conc = paste(before.unique$FR1.IMGT.seq, before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) } else if(empty.region.filter == "FR1"){ before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) } else if(empty.region.filter == "CDR1"){ before.unique$seq_conc = paste(before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) } else if(empty.region.filter == "FR2"){ before.unique$seq_conc = paste(before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) } IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")] IDs$best_match = as.character(IDs$best_match) dat = data.frame(table(before.unique$seq_conc)) names(dat) = c("seq_conc", "Freq") dat$seq_conc = factor(dat$seq_conc) dat = dat[order(as.character(dat$seq_conc)),] #writing html from R... get.bg.color = function(val){ if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color return(ifelse(val,"#eafaf1","#f9ebea")) } else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0 return(ifelse(val > 0,"#eaecee","white")) } else { return("white") } } td = function(val) { return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep="")) } tr = function(val) { return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse="")) } make.link = function(id, clss, val) { paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="") } tbl = function(df) { res = "<table border='1'>" for(i in 1:nrow(df)){ res = paste(res, tr(df[i,]), sep="") } res = paste(res, "</table>") } cat("<center><img src=''> Please note that this tab is based on all sequences before filter unique sequences and the remove duplicates based on filters are applied. In this table only sequences occuring more than once are included. </center>", file=main.html, append=F) cat("<table border='1' class='pure-table pure-table-striped'>", file=main.html, append=T) if(empty.region.filter == "leader"){ cat("<caption>FR1+CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) } else if(empty.region.filter == "FR1"){ cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) } else if(empty.region.filter == "CDR1"){ cat("<caption>FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) } else if(empty.region.filter == "FR2"){ cat("<caption>CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) } cat("<tr>", file=main.html, append=T) cat("<th>Sequence</th><th>Functionality</th><th>IGA1</th><th>IGA2</th><th>IGG1</th><th>IGG2</th><th>IGG3</th><th>IGG4</th><th>IGM</th><th>IGE</th><th>UN</th>", file=main.html, append=T) cat("<th>total IGA</th><th>total IGG</th><th>total IGM</th><th>total IGE</th><th>number of subclasses</th><th>present in both IGA and IGG</th><th>present in IGA, IGG and IGM</th><th>present in IGA, IGG and IGE</th><th>present in IGA, IGG, IGM and IGE</th><th>IGA1+IGA2</th>", file=main.html, append=T) cat("<th>IGG1+IGG2</th><th>IGG1+IGG3</th><th>IGG1+IGG4</th><th>IGG2+IGG3</th><th>IGG2+IGG4</th><th>IGG3+IGG4</th>", file=main.html, append=T) cat("<th>IGG1+IGG2+IGG3</th><th>IGG2+IGG3+IGG4</th><th>IGG1+IGG2+IGG4</th><th>IGG1+IGG3+IGG4</th><th>IGG1+IGG2+IGG3+IGG4</th>", file=main.html, append=T) cat("</tr>", file=main.html, append=T) single.sequences=0 #sequence only found once, skipped in.multiple=0 #same sequence across multiple subclasses multiple.in.one=0 #same sequence multiple times in one subclass unmatched=0 #all of the sequences are unmatched some.unmatched=0 #one or more sequences in a clone are unmatched matched=0 #should be the same als matched sequences sequence.id.page="by_id.html" for(i in 1:nrow(dat)){ ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),] ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),] cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),] cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),] cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),] cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),] cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),] ce = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGE", IDs$best_match),] un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),] allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, ce, un) ca1.n = nrow(ca1) ca2.n = nrow(ca2) cg1.n = nrow(cg1) cg2.n = nrow(cg2) cg3.n = nrow(cg3) cg4.n = nrow(cg4) cm.n = nrow(cm) ce.n = nrow(ce) un.n = nrow(un) classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, ce.n, un.n) classes.sum = sum(classes) if(classes.sum == 1){ single.sequences = single.sequences + 1 next } if(un.n == classes.sum){ unmatched = unmatched + 1 next } classes.no.un = classes[-length(classes)] in.classes = sum(classes.no.un > 0) matched = matched + in.classes #count in how many subclasses the sequence occurs. if(any(classes == classes.sum)){ multiple.in.one = multiple.in.one + 1 } else if (un.n > 0) { some.unmatched = some.unmatched + 1 } else { in.multiple = in.multiple + 1 } id = as.numeric(dat[i,"seq_conc"]) functionality = paste(unique(allc[,"Functionality"]), collapse=",") by.id.row = c() if(ca1.n > 0){ cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep="")) } if(ca2.n > 0){ cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep="")) } if(cg1.n > 0){ cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep="")) } if(cg2.n > 0){ cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep="")) } if(cg3.n > 0){ cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep="")) } if(cg4.n > 0){ cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep="")) } if(cm.n > 0){ cat(tbl(cm), file=paste("IGM_", id, ".html", sep="")) } if(ce.n > 0){ cat(tbl(ce), file=paste("IGE_", id, ".html", sep="")) } if(un.n > 0){ cat(tbl(un), file=paste("un_", id, ".html", sep="")) } ca1.html = make.link(id, "IGA1", ca1.n) ca2.html = make.link(id, "IGA2", ca2.n) cg1.html = make.link(id, "IGG1", cg1.n) cg2.html = make.link(id, "IGG2", cg2.n) cg3.html = make.link(id, "IGG3", cg3.n) cg4.html = make.link(id, "IGG4", cg4.n) cm.html = make.link(id, "IGM", cm.n) ce.html = make.link(id, "IGE", ce.n) un.html = make.link(id, "un", un.n) #extra columns ca.n = ca1.n + ca2.n cg.n = cg1.n + cg2.n + cg3.n + cg4.n #in.classes in.ca.cg = (ca.n > 0 & cg.n > 0) in.ca.cg.cm = (ca.n > 0 & cg.n > 0 & cm.n > 0) in.ca.cg.ce = (ca.n > 0 & cg.n > 0 & ce.n > 0) in.ca.cg.cm.ce = (ca.n > 0 & cg.n > 0 & cm.n > 0 & ce.n > 0) in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0) in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0) in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0) in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0) in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0) in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0) in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0) in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0) in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0) in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0) in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0) in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0) #rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html) rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, ce.html, un.html) rw = c(rw, ca.n, cg.n, cm.n, ce.n, in.classes, in.ca.cg, in.ca.cg.cm, in.ca.cg.ce, in.ca.cg.cm.ce, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all) cat(tr(rw), file=main.html, append=T) for(i in 1:nrow(allc)){ #generate html by id html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"]) cat(paste(html, "<br />"), file=sequence.id.page, append=T) } } cat("</table>", file=main.html, append=T) print(paste("Single sequences:", single.sequences)) print(paste("Sequences in multiple subclasses:", in.multiple)) print(paste("Multiple sequences in one subclass:", multiple.in.one)) print(paste("Matched with unmatched:", some.unmatched)) print(paste("Count that should match 'matched' sequences:", matched)) #ACGT overview #NToverview = merged[!grepl("^unmatched", merged$best_match),] NToverview = merged if(empty.region.filter == "leader"){ NToverview$seq = paste(NToverview$FR1.IMGT.seq, NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) } else if(empty.region.filter == "FR1"){ NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) } else if(empty.region.filter == "CDR1"){ NToverview$seq = paste(NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) } else if(empty.region.filter == "FR2"){ NToverview$seq = paste(NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) } NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq)) NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq)) NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq)) NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq)) #Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T)) #NToverview = rbind(NToverview, NTsum) NTresult = data.frame(nt=c("A", "C", "T", "G")) for(clazz in gene.classes){ print(paste("class:", clazz)) NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),] print(paste("nrow:", nrow(NToverview.sub))) new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G)) new.col.y = sum(new.col.x) new.col.z = round(new.col.x / new.col.y * 100, 2) tmp = names(NTresult) NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z)) names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep="")) } NToverview.tmp = NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")] names(NToverview.tmp) = c("Sequence.ID", "best_match", "Sequence of the analysed region", "A", "C", "G", "T") write.table(NToverview.tmp, NToverview.file, quote=F, sep="\t", row.names=F, col.names=T) NToverview = NToverview[!grepl("unmatched", NToverview$best_match),] new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G)) new.col.y = sum(new.col.x) new.col.z = round(new.col.x / new.col.y * 100, 2) tmp = names(NTresult) NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z)) names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep="")) names(hotspot.analysis.sum) = names(NTresult) hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult) write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")