view MIRUReader/README.md @ 1:1a7d6584e1ec draft

Uploaded
author dcouvin
date Tue, 17 Aug 2021 23:27:22 +0000
parents f0e3646a4e45
children
line wrap: on
line source

# MIRUReader

## Description

Identify 24-locus MIRU-VNTR for *Mycobacterium tuberculosis* complex (MTBC) directly from long reads generated by Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio). Also work on assembled genome.

## Requirements

* Linux
* primersearch from [EMBOSS](http://emboss.sourceforge.net/download/)
   * install from the official website or
   * install via conda `conda install -c bioconda emboss`
   * Ensure the primersearch command is in your device's environment path, where primersearch program can be executed directly by typing `primersearch` on the commandline
* [*pandas*](https://pandas.pydata.org/) 
   * can be installed via conda `conda install pandas` or via PyPI `pip install pandas`
* [*statistics*](https://pypi.org/project/statistics/)
   * can be installed via PyPI `pip install statistics`

## Installation

`git clone https://github.com/phglab/MIRUReader.git`

## Change log
#### 13/09/2019
- Added a check to ensure primersearch is executable prior to MIRUReader program execution
- Updated documentation to the README

#### 04/07/2019
- Update output format for option '--details'.

#### 14/06/2019
- Auto convert fastq to fasta.

## Usage example

For one sample analysis:
```
python /your/path/to/MIRUReader.py -r sample.fasta -p sampleID > miru.txt
```

For multiple samples analysis:
1. Create a mapping file (mappingFile.txt) that looks like:

    sample_001.fasta sample_001 \
    sample_002.fasta sample_002 \
    ...

2. Then run the program:
```
cat mappingFile.txt | while read -a line; do python /your/path/to/MIRUReader.py -r ${line[0]} -p ${line[1]}; done > miru.multiple.txt
```

## Output example

```
sample_prefix   0154    0424    0577    0580    0802    0960    1644    1955    2059    2163b   2165    2347    2401    2461    2531    2687    2996    3007    3171    3192    3690    4052    4156    4348
sample_001      2       4       4       2       3       3       3       2       2       5       4       4       4       2       5       1       6       3       3       5       3       7       2       3
```

Notes:
* The program is compatible to Python 2 and Python 3.
* Accepted reads file format includes '.fastq', '.fastq.gz', '.fasta', and '.fasta.gz'.
* The program output is a tab-delimited plain text which can be copied to or opened in Excel spreadsheet.

## Full usage

| Main options | Description |
| ------------ | ----------- |
| -r READS | Input reads file in fastq/fasta format, can be gzipped or not gzipped |
| -p PREFIX | Sample ID required for naming output file. |
| --table TABLE | Allele calling table, default is MIRU_table. Can be user-defined in fixed format. However, providing custom allele calling table for other VNTR is not tested. |
| --primers PRIMERS | Primers sequences, default is MIRU_primers. Can be user-defined in fixed format. |


| Optional options | Description |
| ---------------- | ----------- |
| --amplicons | Use output from primersearch ("prefix.18.primersearch.out") and summarize MIRU profile directly. |
| --details | This option is for further inspection. It displays details of repeat count for each loci with total mismatch error in the primer sequences alignment. |
| --nofasta | Delete fasta file generated if your input read is in fastq format. |

## FAQ
1. **Why are there two MIRU allele calling tables (MIRU_table and MIRU_table_0580)?** 

MIRU loci 0580 (MIRU_table_0580) consist of a different numbering system for determination of repeat numbers as compared to the other 23 MIRU locus (MIRU_table) for MTBC isolates.  


## Troubleshooting
1. If an error message `OSError: primersearch is not found.` appears, please ensure your `primersearch` executable file is in your environment path (`echo $PATH`) and can be called directly.