Mercurial > repos > dcouvin > pmlst2
comparison pmlst/pmlst.py @ 0:140d4f9e1f20 draft default tip
Uploaded
author | dcouvin |
---|---|
date | Mon, 06 Sep 2021 16:00:46 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:140d4f9e1f20 |
---|---|
1 #!/usr/bin/env python3 | |
2 | |
3 import os, sys, re, time, pprint, io, shutil | |
4 import argparse, subprocess | |
5 | |
6 from cgecore.alignment import extended_cigar | |
7 from cgecore.blaster.blaster import Blaster | |
8 from cgecore.cgefinder import CGEFinder | |
9 import json, gzip | |
10 from tabulate import tabulate | |
11 | |
12 | |
13 def get_read_filename(infiles): | |
14 ''' Infiles must be a list with 1 or 2 input files. | |
15 Removes path from given string and removes extensions: | |
16 .fq .fastq .gz and .trim | |
17 extract the common sample name i 2 files are given. | |
18 ''' | |
19 # Remove common fastq extensions | |
20 seq_path = infiles[0] | |
21 seq_file = os.path.basename(seq_path) | |
22 seq_file = seq_file.replace(".fq", "") | |
23 seq_file = seq_file.replace(".fastq", "") | |
24 seq_file = seq_file.replace(".gz", "") | |
25 seq_file = seq_file.replace(".trim", "") | |
26 if len(infiles) == 1: | |
27 return seq_file.rstrip() | |
28 | |
29 # If two files are given get the common sample name | |
30 sample_name = "" | |
31 seq_file_2 = os.path.basename(infiles[1]) | |
32 for i in range(len(seq_file)): | |
33 if seq_file_2[i] == seq_file[i]: | |
34 sample_name += seq_file[i] | |
35 else: | |
36 break | |
37 if sample_name == "": | |
38 sys.error("Input error: sample names of input files, {} and {}, \ | |
39 does not share a common sample name. If these files \ | |
40 are paired end reads from the same sample, please rename \ | |
41 them with a common sample name (e.g. 's22_R1.fq', 's22_R2.fq') \ | |
42 or input them seperately.".format(infiles[0], infiles[1])) | |
43 | |
44 return sample_name.rstrip("-").rstrip("_") | |
45 | |
46 def is_gzipped(file_path): | |
47 ''' Returns True if file is gzipped and False otherwise. | |
48 The result is inferred from the first two bits in the file read | |
49 from the input path. | |
50 On unix systems this should be: 1f 8b | |
51 Theoretically there could be exceptions to this test but it is | |
52 unlikely and impossible if the input files are otherwise expected | |
53 to be encoded in utf-8. | |
54 ''' | |
55 with open(file_path, mode='rb') as fh: | |
56 bit_start = fh.read(2) | |
57 if(bit_start == b'\x1f\x8b'): | |
58 return True | |
59 else: | |
60 return False | |
61 | |
62 def get_file_format(input_files): | |
63 """ | |
64 Takes all input files and checks their first character to assess | |
65 the file format. Returns one of the following strings; fasta, fastq, | |
66 other or mixed. fasta and fastq indicates that all input files are | |
67 of the same format, either fasta or fastq. other indiates that all | |
68 files are not fasta nor fastq files. mixed indicates that the inputfiles | |
69 are a mix of different file formats. | |
70 """ | |
71 | |
72 # Open all input files and get the first character | |
73 file_format = [] | |
74 invalid_files = [] | |
75 for infile in input_files: | |
76 if is_gzipped(infile):#[-3:] == ".gz": | |
77 f = gzip.open(infile, "rb") | |
78 fst_char = f.read(1); | |
79 else: | |
80 f = open(infile, "rb") | |
81 fst_char = f.read(1); | |
82 f.close() | |
83 # Assess the first character | |
84 if fst_char == b"@": | |
85 file_format.append("fastq") | |
86 elif fst_char == b">": | |
87 file_format.append("fasta") | |
88 else: | |
89 invalid_files.append("other") | |
90 if len(set(file_format)) != 1: | |
91 return "mixed" | |
92 return ",".join(set(file_format)) | |
93 | |
94 def import_profile(database, scheme, loci_list): | |
95 """Import all possible allele profiles with corresponding st's | |
96 for the scheme into a dict. The profiles are stored in a dict | |
97 of dicts, to easily look up what st types are accosiated with | |
98 a specific allele number of each loci. | |
99 """ | |
100 # Open allele profile file from databaseloci | |
101 profile_file = open("{0}/{1}.txt.clean".format(database, scheme), "r") | |
102 profile_header = profile_file.readline().strip().split("\t")[1:len(loci_list)+1] | |
103 | |
104 # Create dict for looking up st-types with locus/allele combinations | |
105 st_profiles = {} | |
106 # For each locus initate make an inner dict to store allele and st's | |
107 for locus in loci_list: | |
108 st_profiles[locus] = {} | |
109 | |
110 # Fill inner dict with allele no as key and st-types seen with the allele as value | |
111 for line in profile_file: | |
112 profile = line.strip().split("\t") | |
113 st_name = profile[0] | |
114 allele_list = profile[1:len(loci_list)+1] | |
115 | |
116 # Go through all allele profiles. Save locus-allele combination with the st-type | |
117 for i in range(len(allele_list)): | |
118 allele = allele_list[i] | |
119 locus = profile_header[i] | |
120 if allele in st_profiles[locus]: | |
121 st_profiles[locus][allele] += [st_name] | |
122 else: | |
123 st_profiles[locus][allele] = [st_name] | |
124 profile_file.close() | |
125 | |
126 return st_profiles | |
127 | |
128 def st_typing(st_profiles, allele_matches, loci_list): | |
129 """ | |
130 Takes the path to a dictionary, the inp list of the allele | |
131 number that each loci has been assigned, and an output file string | |
132 where the found st type and similaity is written into it. | |
133 """ | |
134 | |
135 # Find best ST type for all allele profiles | |
136 st_output = "" | |
137 note = "" | |
138 | |
139 # First line contains matrix column headers, which are the specific loci | |
140 st_hits = [] | |
141 st_marks = [] | |
142 note = "" | |
143 | |
144 # Check the quality of the alle hits | |
145 for locus in allele_matches: | |
146 allele = allele_matches[locus]["allele"] | |
147 | |
148 # Check if allele is marked as a non-perfect match. Save mark and write note. | |
149 if "?*" in allele: | |
150 note += "?* {}: Imperfect hit, ST can not be trusted!\n".format(locus) | |
151 st_marks = ["?","*"] | |
152 elif "?" in allele: | |
153 note += "? {}: Uncertain hit, ST can not be trusted.\n".format(locus) | |
154 st_marks.append("?") | |
155 elif "*" in allele: | |
156 note += "* {}: Novel allele, ST may indicate nearest ST.\n".format(locus) | |
157 st_marks.append("*") | |
158 | |
159 # Remove mark from allele so it can be used to look up nearest st types | |
160 allele = allele.rstrip("*?!") | |
161 | |
162 # Get all st's that have the alleles in it's allele profile | |
163 st_hits += st_profiles[locus].get(allele, ["None"]) | |
164 if "alternative_hit" in allele_matches[locus] and allele_matches[locus]["alternative_hit"] != {}: | |
165 note += "! {}: Multiple perfect hits found\n".format(locus) | |
166 st_marks.append("!") | |
167 for allele_name, hit_info in allele_matches[locus]["alternative_hit"].items(): | |
168 allele = hit_info["allele"].rstrip("!") | |
169 st_hits += st_profiles[locus].get(allele, ["None"]) | |
170 | |
171 # Save allele marks to be transfered to the ST | |
172 st_mark = "".join(set(st_marks)) | |
173 notes = st_mark | |
174 # Add marks information to notes | |
175 if "!" in st_mark: | |
176 notes += " alleles with multiple perfect hits found, multiple STs might be found\n" | |
177 if "*" in st_mark and "?" in st_mark: | |
178 notes += " alleles with less than 100% identity and 100% coverages found\n" | |
179 elif st_mark == "*": | |
180 notes = st_mark + " alleles with less than 100% identity found\n" | |
181 elif st_mark == "?": | |
182 notes = st_mark + " alleles with less than 100% coverage found\n" | |
183 notes += note | |
184 | |
185 # Find most frequent st in st_hits | |
186 st_hits_counter = {} | |
187 max_count = 0 | |
188 best_hit = "" | |
189 for hit in st_hits: | |
190 if hit is not "None": | |
191 if hit in st_hits_counter: | |
192 st_hits_counter[hit] += 1 | |
193 else: | |
194 st_hits_counter[hit] = 1 | |
195 if max_count < st_hits_counter[hit]: | |
196 max_count = st_hits_counter[hit] | |
197 best_hit = hit | |
198 | |
199 # Check if allele profile match found st 100 % | |
200 similarity = round(float(max_count)/len(loci_list)*100, 2) | |
201 | |
202 if similarity != 100: | |
203 st = "Unknown" | |
204 nearest_sts = [] | |
205 # If st is not perfect find nearest st's | |
206 for st_hit, allele_score in sorted(st_hits_counter.items(), key=lambda x: x[1], reverse=True): | |
207 if allele_score < max_count: | |
208 break | |
209 nearest_sts.append(st_hit) | |
210 nearest_sts = ",".join(nearest_sts) #+ st_mark | |
211 else: | |
212 # allele profile has a perfect ST hit but the st marks given to the alleles might indicate imperfect hits | |
213 sts = [st for st, no in st_hits_counter.items() if no == max_count] | |
214 #if len(sts) > 1: | |
215 st = "{},".format(st_mark).join(sts) + st_mark | |
216 #st = best_hit + st_mark | |
217 nearest_sts = "" | |
218 | |
219 return st, notes, nearest_sts | |
220 | |
221 def make_aln(scheme, file_handle, allele_matches, query_aligns, homol_aligns, sbjct_aligns): | |
222 for locus, locus_info in allele_matches.items(): | |
223 allele_name = locus_info["allele_name"] | |
224 if allele_name == "No hit found": | |
225 continue | |
226 hit_name = locus_info["hit_name"] | |
227 | |
228 seqs = ["","",""] | |
229 seqs[0] = sbjct_aligns[scheme][hit_name] | |
230 seqs[1] = homol_aligns[scheme][hit_name] | |
231 seqs[2] = query_aligns[scheme][hit_name] | |
232 | |
233 write_align(seqs, allele_name, file_handle) | |
234 | |
235 | |
236 # write alternative seq | |
237 if "alternative_hit" in locus_info: | |
238 for allele_name in locus_info["alternative_hit"]: | |
239 hit_name = locus_info["alternative_hit"][allele_name]["hit_name"] | |
240 seqs = ["","",""] | |
241 seqs[0] = sbjct_aligns[scheme][hit_name] | |
242 seqs[1] = homol_aligns[scheme][hit_name] | |
243 seqs[2] = query_aligns[scheme][hit_name] | |
244 | |
245 write_align(seqs, allele_name, file_handle) | |
246 | |
247 def write_align(seq, seq_name, file_handle): | |
248 file_handle.write("# {}".format(seq_name) + "\n") | |
249 sbjct_seq = seq[0] | |
250 homol_seq = seq[1] | |
251 query_seq = seq[2] | |
252 for i in range(0,len(sbjct_seq),60): | |
253 file_handle.write("%-10s\t%s\n"%("template:", sbjct_seq[i:i+60])) | |
254 file_handle.write("%-10s\t%s\n"%("", homol_seq[i:i+60])) | |
255 file_handle.write("%-10s\t%s\n\n"%("query:", query_seq[i:i+60])) | |
256 | |
257 def text_table(headers, rows, empty_replace='-'): | |
258 ''' Create text table | |
259 | |
260 USAGE: | |
261 >>> from tabulate import tabulate | |
262 >>> headers = ['A','B'] | |
263 >>> rows = [[1,2],[3,4]] | |
264 >>> print(text_table(headers, rows)) | |
265 ********** | |
266 A B | |
267 ********** | |
268 1 2 | |
269 3 4 | |
270 ========== | |
271 ''' | |
272 # Replace empty cells with placeholder | |
273 rows = map(lambda row: map(lambda x: x if x else empty_replace, row), rows) | |
274 # Create table | |
275 table = tabulate(rows, headers, tablefmt='simple').split('\n') | |
276 # Prepare title injection | |
277 width = len(table[0]) | |
278 # Switch horisontal line | |
279 table[1] = '*'*(width+2) | |
280 # Update table with title | |
281 table = ("%s\n"*3)%('*'*(width+2), '\n'.join(table), '='*(width+2)) | |
282 return table | |
283 | |
284 | |
285 parser = argparse.ArgumentParser(description="") | |
286 # Arguments | |
287 parser.add_argument("-i", "--infile", | |
288 help="FASTA or FASTQ files to do pMLST on.", | |
289 nargs="+", required=True) | |
290 parser.add_argument("-o", "--outdir", | |
291 help="Output directory.", | |
292 default=".") | |
293 parser.add_argument("-s", "--scheme", | |
294 help="scheme database used for pMLST prediction", required=True) | |
295 parser.add_argument("-p", "--database", | |
296 help="Directory containing the databases.", default="/database") | |
297 parser.add_argument("-t", "--tmp_dir", | |
298 help="Temporary directory for storage of the results\ | |
299 from the external software.", | |
300 default="tmp_pMLST") | |
301 parser.add_argument("-mp", "--method_path", | |
302 help="Path to the method to use (kma or blastn)\ | |
303 if assembled contigs are inputted the path to executable blastn should be given,\ | |
304 if fastq files are given path to executable kma should be given") | |
305 parser.add_argument("-x", "--extented_output", | |
306 help="Give extented output with allignment files, template and query hits in fasta and\ | |
307 a tab seperated file with allele profile results", action="store_true") | |
308 parser.add_argument("-q", "--quiet", action="store_true") | |
309 | |
310 | |
311 #parser.add_argument("-c", "--coverage", | |
312 # help="Minimum template coverage required", default = 0.6) | |
313 #parser.add_argument("-i", "--identity", | |
314 # help="Minimum template identity required", default = 0.9) | |
315 args = parser.parse_args() | |
316 | |
317 if args.quiet: | |
318 f = open(os.devnull, 'w') | |
319 sys.stdout = f | |
320 | |
321 | |
322 #TODO what are the clonal complex data used for?? | |
323 | |
324 # TODO error handling | |
325 infile = args.infile | |
326 # Check that outdir is an existing dir... | |
327 outdir = os.path.abspath(args.outdir) | |
328 scheme = args.scheme | |
329 database = os.path.abspath(args.database) | |
330 tmp_dir = os.path.abspath(args.tmp_dir) | |
331 # Check if method path is executable | |
332 method_path = args.method_path | |
333 extented_output = args.extented_output | |
334 | |
335 min_cov = 0.6 # args.coverage | |
336 threshold = 0.95 # args.identity | |
337 | |
338 # Check file format (fasta, fastq or other format) | |
339 file_format = get_file_format(infile) | |
340 | |
341 db_path = "{}/".format(database, scheme) | |
342 | |
343 config_file = open(database + "/config","r") | |
344 | |
345 # Get profile_name from config file | |
346 scheme_list = [] | |
347 for line in config_file: | |
348 if line.startswith("#"): | |
349 continue | |
350 line = line.split("\t") | |
351 scheme_list.append(line[0]) | |
352 if line[0] == scheme: | |
353 profile_name = line[1] | |
354 | |
355 config_file.close() | |
356 | |
357 if scheme not in scheme_list: | |
358 sys.exit("{}, is not a valid scheme. \n\nPlease choose a scheme available in the database:\n{}".format(scheme, ", ".join(scheme_list))) | |
359 | |
360 # Get loci list from allele profile file | |
361 with open("{0}/{1}.txt.clean".format(database, scheme), "r") as st_file: | |
362 file_header = st_file.readline().strip().split("\t") | |
363 loci_list = file_header[1:] | |
364 | |
365 # Call appropriate method (kma or blastn) based on file format | |
366 if file_format == "fastq": | |
367 if not method_path: | |
368 method_path = "kma" | |
369 if shutil.which(method_path) == None: | |
370 sys.exit("No valid path to a kma program was provided. Use the -mp flag to provide the path.") | |
371 # Check the number of files | |
372 if len(infile) == 1: | |
373 infile_1 = infile[0] | |
374 infile_2 = None | |
375 elif len(infile) == 2: | |
376 infile_1 = infile[0] | |
377 infile_2 = infile[1] | |
378 else: | |
379 sys.exit("Only 2 input file accepted for raw read data,\ | |
380 if data from more runs is avaliable for the same\ | |
381 sample, please concatinate the reads into two files") | |
382 | |
383 sample_name = get_read_filename(infile) | |
384 method = "kma" | |
385 | |
386 # Call KMA | |
387 method_obj = CGEFinder.kma(infile_1, outdir, [scheme], db_path, min_cov=min_cov, | |
388 threshold=threshold, kma_path=method_path, sample_name=sample_name, | |
389 inputfile_2=infile_2, kma_mrs=0.75, kma_gapopen=-5, | |
390 kma_gapextend=-1, kma_penalty=-3, kma_reward=1) | |
391 | |
392 elif file_format == "fasta": | |
393 if not method_path: | |
394 method_path = "blastn" | |
395 if shutil.which(method_path) == None: | |
396 sys.exit("No valid path to a blastn program was provided. Use the -mp flag to provide the path.") | |
397 # Assert that only one fasta file is inputted | |
398 assert len(infile) == 1, "Only one input file accepted for assembled data." | |
399 infile = infile[0] | |
400 method = "blast" | |
401 | |
402 # Call BLASTn | |
403 method_obj = Blaster(infile, [scheme], db_path, tmp_dir, | |
404 min_cov, threshold, method_path, cut_off=False) | |
405 #allewed_overlap=50) | |
406 else: | |
407 sys.exit("Input file must be fastq or fasta format, not "+ file_format) | |
408 | |
409 results = method_obj.results | |
410 query_aligns = method_obj.gene_align_query | |
411 homol_aligns = method_obj.gene_align_homo | |
412 sbjct_aligns = method_obj.gene_align_sbjct | |
413 | |
414 # Check that the results dict is not empty | |
415 warning = "" | |
416 if results[scheme] == "No hit found": | |
417 results[scheme] = {} | |
418 warning = ("No MLST loci was found in the input data, " | |
419 "make sure that the correct pMLST scheme was chosen.") | |
420 | |
421 | |
422 allele_matches = {} | |
423 | |
424 # Get the found allele profile contained in the results dict | |
425 for hit, locus_hit in results[scheme].items(): | |
426 | |
427 # Get allele number for locus | |
428 allele_name = locus_hit["sbjct_header"] | |
429 allele_obj = re.search("(\w+)[_|-](\w+$)", allele_name) | |
430 | |
431 # Get variable to later storage in the results dict | |
432 locus = allele_obj.group(1) | |
433 allele = allele_obj.group(2) | |
434 coverage = float(locus_hit["perc_coverage"]) | |
435 identity = float(locus_hit["perc_ident"]) | |
436 score = float(locus_hit["cal_score"]) | |
437 gaps = int(locus_hit["gaps"]) | |
438 align_len = locus_hit["HSP_length"] | |
439 sbj_len = int(locus_hit["sbjct_length"]) | |
440 sbjct_seq = locus_hit["sbjct_string"] | |
441 query_seq = locus_hit["query_string"] | |
442 homol_seq = locus_hit["homo_string"] | |
443 cigar = extended_cigar(sbjct_aligns[scheme][hit], query_aligns[scheme][hit]) | |
444 | |
445 # Check for perfect hits | |
446 if coverage == 100 and identity == 100: | |
447 # If a perfect hit was already found the list more_perfect hits will exist this new hit is appended to this list | |
448 try: | |
449 allele_matches[locus]["alternative_hit"][allele_name] = {"allele":allele+"!", "align_len":align_len, "sbj_len":sbj_len, | |
450 "coverage":coverage, "identity":identity, "hit_name":hit} | |
451 if allele_matches[locus]["allele"][-1] != "!": | |
452 allele_matches[locus]["allele"] += "!" | |
453 except KeyError: | |
454 # Overwrite alleles already saved, save the perfect match and break to go to next locus | |
455 allele_matches[locus] = {"score":score, "allele":allele, "coverage":coverage, | |
456 "identity":identity, "match_priority": 1, "align_len":align_len, | |
457 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
458 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
459 "hit_name":hit, "cigar":cigar, "alternative_hit":{}} | |
460 else: | |
461 # If no hit has yet been stored initialize dict variables that are looked up below | |
462 if locus not in allele_matches: | |
463 allele_matches[locus] = {"score":0, "match_priority": 4} | |
464 | |
465 # We weight full coverage higher than perfect identity match | |
466 if coverage == 100 and identity != 100: | |
467 # Check that better (higher prioritized) 100% coverage hit has not been stored yet | |
468 if allele_matches[locus]["match_priority"] > 2 or (allele_matches[locus]["match_priority"] == 2 and score > allele_matches[locus]["score"]): | |
469 allele_matches[locus] = {"score":score, "allele":allele+"*", "coverage":coverage, | |
470 "identity":identity, "match_priority": 2, "align_len":align_len, | |
471 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
472 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
473 "hit_name":hit, "cigar":cigar} | |
474 elif coverage != 100 and identity == 100: | |
475 # Check that higher prioritized hit was not already stored | |
476 if allele_matches[locus]["match_priority"] > 3 or (allele_matches[locus]["match_priority"] == 3 and score > allele_matches[locus]["score"]): | |
477 allele_matches[locus] = {"score":score, "allele":allele + "?", "coverage":coverage, | |
478 "identity":identity, "match_priority": 3, "align_len":align_len, | |
479 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
480 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
481 "hit_name":hit, "cigar":cigar} | |
482 else: # coverage != 100 and identity != 100: | |
483 if allele_matches[locus]["match_priority"] == 4 and score > allele_matches[locus]["score"]: | |
484 allele_matches[locus] = {"score":score, "allele":allele + "?*", "coverage":coverage, | |
485 "identity":identity, "match_priority": 4, "align_len":align_len, | |
486 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
487 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
488 "hit_name":hit, "cigar":cigar} | |
489 for locus in loci_list: | |
490 if locus not in allele_matches: | |
491 allele_matches[locus] = {"identity":"", "coverage":"", "allele":"", "allele_name":"No hit found", "align_len":"", "gaps":"", "sbj_len":""} | |
492 | |
493 # Import all possible st profiles into dict | |
494 st_profiles = import_profile(database, scheme,loci_list) | |
495 | |
496 # Find st or neatest sts | |
497 st, note, nearest_sts = st_typing(st_profiles, allele_matches, loci_list) | |
498 | |
499 # Give warning of mlst schene if no loci were found | |
500 if note == "" and warning != "": | |
501 note = warning | |
502 | |
503 # Set ST for incF | |
504 if scheme.lower() == "incf": | |
505 st = ["F","A", "B"] | |
506 if "FII" in allele_matches and allele_matches["FII"]["identity"] == 100.0: | |
507 st[0] += allele_matches["FII"]["allele_name"].split("_")[-1] | |
508 elif "FIC" in allele_matches and allele_matches["FIC"]["identity"] == 100.0: | |
509 st[0] = "C" + allele_matches["FIC"]["allele_name"].split("_")[-1] | |
510 elif "FIIK" in allele_matches and allele_matches["FIIK"]["identity"] == 100.0: | |
511 st[0] = "K" + allele_matches["FIIK"]["allele_name"].split("_")[-1] | |
512 elif "FIIS" in allele_matches and allele_matches["FIIS"]["identity"] == 100.0: | |
513 st[0] = "S" + allele_matches["FIIS"]["allele_name"].split("_")[-1] | |
514 elif "FIIY" in allele_matches and allele_matches["FIIY"]["identity"] == 100.0: | |
515 st[0] = "Y" + allele_matches["FIIY"]["allele_name"].split("_")[-1] | |
516 else: | |
517 st[0] += "-" | |
518 | |
519 if "FIA" in allele_matches and allele_matches["FIA"]["identity"] == 100.0: | |
520 st[1] += allele_matches["FIA"]["allele_name"].split("_")[-1] | |
521 else: | |
522 st[1] += "-" | |
523 | |
524 if "FIB" in allele_matches and allele_matches["FIB"]["identity"] == 100.0: | |
525 st[2] += allele_matches["FIB"]["allele_name"].split("_")[-1] | |
526 else: | |
527 st[2] += "-" | |
528 | |
529 st = "["+":".join(st)+"]" | |
530 | |
531 | |
532 # Check if ST is associated with a clonal complex. | |
533 clpx = "" | |
534 if st != "Unknown" or nearest_sts != "": | |
535 with open("{0}/{1}.clpx".format(database,scheme), "r") as clpx_file: | |
536 for line in clpx_file: | |
537 line = line.split("\t") | |
538 if st[0] == line[0] or nearest_sts == line[0]: | |
539 clpx = line[1].strip() | |
540 | |
541 | |
542 # Get run info for JSON file | |
543 service = os.path.basename(__file__).replace(".py", "") | |
544 date = time.strftime("%d.%m.%Y") | |
545 time = time.strftime("%H:%M:%S") | |
546 | |
547 # TODO find a system to show the database and service version using git | |
548 | |
549 # Make JSON output file | |
550 data = {service:{}} | |
551 allele_results = {} | |
552 for locus, locus_info in allele_matches.items(): | |
553 allele_results[locus] = {"identity":0, "coverage":0, "allele":[], "allele_name":[], "align_len":[], "gaps":0, "sbj_len":[]} | |
554 for (key, value) in locus_info.items(): | |
555 if key in allele_results[locus] or (key == "alternative_hit" and value != {}): | |
556 allele_results[locus][key] = value | |
557 | |
558 userinput = {"filename":args.infile, "scheme":args.scheme, "profile":profile_name,"file_format":file_format} | |
559 run_info = {"date":date, "time":time}#, "database":{"remote_db":remote_db, "last_commit_hash":head_hash}} | |
560 server_results = {"sequence_type":st, "allele_profile": allele_results, | |
561 "nearest_sts":nearest_sts,"clonal_complex":clpx, "notes":note} | |
562 | |
563 data[service]["user_input"] = userinput | |
564 data[service]["run_info"] = run_info | |
565 data[service]["results"] = server_results | |
566 | |
567 pprint.pprint(data) | |
568 | |
569 # Save json output | |
570 result_file = "{}/data.json".format(outdir) | |
571 with open(result_file, "w") as outfile: | |
572 json.dump(data, outfile) | |
573 | |
574 if extented_output: | |
575 # Define extented output | |
576 table_filename = "{}/results_tab.tsv".format(outdir) | |
577 query_filename = "{}/Hit_in_genome_seq.fsa".format(outdir) | |
578 sbjct_filename = "{}/pMLST_allele_seq.fsa".format(outdir) | |
579 result_filename = "{}/results.txt".format(outdir) | |
580 table_file = open(table_filename, "w") | |
581 query_file = open(query_filename, "w") | |
582 sbjct_file = open(sbjct_filename, "w") | |
583 result_file = open(result_filename, "w") | |
584 | |
585 # Make results file | |
586 result_file.write("{0} Results\n\n".format(service)) | |
587 result_file.write("pMLST profile: {}\n\nSequence Type: {}\n".format(profile_name, st)) | |
588 # If ST is unknown report nearest ST | |
589 if st == "Unknown" and nearest_sts != "": | |
590 if len(nearest_sts.split(",")) == 1: | |
591 result_file.write("Nearest ST: {}\n".format(nearest_sts)) | |
592 else: | |
593 result_file.write("Nearest STs: {}\n".format(nearest_sts)) | |
594 | |
595 # Report clonal complex if one was associated with ST: | |
596 if clpx != "": | |
597 result_file.write("Clonal complex: {}\n".format(clpx)) | |
598 | |
599 # Write tsv table header | |
600 table_header = ["Locus", "Identity", "Coverage", "Alignment Length", "Allele Length", "Gaps", "Allele"] | |
601 table_file.write("\t".join(table_header) + "\n") | |
602 rows = [] | |
603 for locus, allele_info in allele_matches.items(): | |
604 | |
605 identity = str(allele_info["identity"]) | |
606 coverage = str(allele_info["coverage"]) | |
607 allele = allele_info["allele"] | |
608 allele_name = allele_info["allele_name"] | |
609 align_len = str(allele_info["align_len"]) | |
610 sbj_len = str(allele_info["sbj_len"]) | |
611 gaps = str(allele_info["gaps"]) | |
612 | |
613 # Write alleles names with indications of imperfect hits | |
614 if allele_name != "No hit found": | |
615 allele_name_w_mark = locus + "_" + allele | |
616 else: | |
617 allele_name_w_mark = allele_name | |
618 | |
619 # Write allele results to tsv table | |
620 row = [locus, identity, coverage, align_len, sbj_len, gaps, allele_name_w_mark] | |
621 rows.append(row) | |
622 if "alternative_hit" in allele_info: | |
623 for allele_name, dic in allele_info["alternative_hit"].items(): | |
624 row = [locus, identity, coverage, str(dic["align_len"]), str(dic["sbj_len"]), "0", allele_name + "!"] | |
625 rows.append(row) | |
626 # | |
627 | |
628 if allele_name == "No hit found": | |
629 continue | |
630 | |
631 # Write query fasta output | |
632 hit_name = allele_info["hit_name"] | |
633 query_seq = query_aligns[scheme][hit_name] | |
634 sbjct_seq = sbjct_aligns[scheme][hit_name] | |
635 homol_seq = homol_aligns[scheme][hit_name] | |
636 | |
637 if allele_info["match_priority"] == 1: | |
638 match = "PERFECT MATCH" | |
639 else: | |
640 match = "WARNING" | |
641 header = ">{}:{} ID:{}% COV:{}% Best_match:{}\n".format(locus, match, allele_info["identity"], | |
642 allele_info["coverage"], allele_info["allele_name"]) | |
643 query_file.write(header) | |
644 for i in range(0,len(query_seq),60): | |
645 query_file.write(query_seq[i:i+60] + "\n") | |
646 | |
647 # Write template fasta output | |
648 header = ">{}\n".format(allele_info["allele_name"]) | |
649 sbjct_file.write(header) | |
650 for i in range(0,len(sbjct_seq),60): | |
651 sbjct_file.write(sbjct_seq[i:i+60] + "\n") | |
652 | |
653 if "alternative_hit" in allele_info: | |
654 for allele_name in allele_info["alternative_hit"]: | |
655 header = ">{}:{} ID:{}% COV:{}% Best_match:{}\n".format(locus, "PERFECT MATCH", 100, | |
656 100, allele_name) | |
657 hit_name = allele_info["alternative_hit"][allele_name]["hit_name"] | |
658 query_seq = query_aligns[scheme][hit_name] | |
659 sbjct_seq = sbjct_aligns[scheme][hit_name] | |
660 homol_seq = homol_aligns[scheme][hit_name] | |
661 query_file.write(header) | |
662 for i in range(0,len(query_seq),60): | |
663 query_file.write(query_seq[i:i+60] + "\n") | |
664 | |
665 # Write template fasta output | |
666 header = ">{}\n".format(allele_name) | |
667 sbjct_file.write(header) | |
668 for i in range(0,len(sbjct_seq),60): | |
669 sbjct_file.write(sbjct_seq[i:i+60] + "\n") | |
670 | |
671 # Write Allele profile results tables in results file and table file | |
672 rows.sort(key=lambda x: x[0]) | |
673 result_file.write(text_table(table_header, rows)) | |
674 for row in rows: | |
675 table_file.write("\t".join(row) + "\n") | |
676 # Write any notes | |
677 if note != "": | |
678 result_file.write("\nNotes: {}\n\n".format(note)) | |
679 | |
680 # Write allignment output | |
681 result_file.write("\n\nExtended Output:\n\n") | |
682 make_aln(scheme, result_file, allele_matches, query_aligns, homol_aligns, sbjct_aligns) | |
683 | |
684 # Close all files | |
685 query_file.close() | |
686 sbjct_file.close() | |
687 table_file.close() | |
688 result_file.close() | |
689 | |
690 if args.quiet: | |
691 f.close() |