Mercurial > repos > dcouvin > pmlst_v2
comparison pmlst/pmlst.py @ 0:cfab64885f66 draft default tip
Uploaded
| author | dcouvin |
|---|---|
| date | Mon, 06 Sep 2021 18:27:45 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:cfab64885f66 |
|---|---|
| 1 #!/usr/bin/env python3 | |
| 2 | |
| 3 import os, sys, re, time, pprint, io, shutil | |
| 4 import argparse, subprocess | |
| 5 | |
| 6 from cgecore.alignment import extended_cigar | |
| 7 from cgecore.blaster.blaster import Blaster | |
| 8 from cgecore.cgefinder import CGEFinder | |
| 9 import json, gzip | |
| 10 from tabulate import tabulate | |
| 11 | |
| 12 | |
| 13 def get_read_filename(infiles): | |
| 14 ''' Infiles must be a list with 1 or 2 input files. | |
| 15 Removes path from given string and removes extensions: | |
| 16 .fq .fastq .gz and .trim | |
| 17 extract the common sample name i 2 files are given. | |
| 18 ''' | |
| 19 # Remove common fastq extensions | |
| 20 seq_path = infiles[0] | |
| 21 seq_file = os.path.basename(seq_path) | |
| 22 seq_file = seq_file.replace(".fq", "") | |
| 23 seq_file = seq_file.replace(".fastq", "") | |
| 24 seq_file = seq_file.replace(".gz", "") | |
| 25 seq_file = seq_file.replace(".trim", "") | |
| 26 if len(infiles) == 1: | |
| 27 return seq_file.rstrip() | |
| 28 | |
| 29 # If two files are given get the common sample name | |
| 30 sample_name = "" | |
| 31 seq_file_2 = os.path.basename(infiles[1]) | |
| 32 for i in range(len(seq_file)): | |
| 33 if seq_file_2[i] == seq_file[i]: | |
| 34 sample_name += seq_file[i] | |
| 35 else: | |
| 36 break | |
| 37 if sample_name == "": | |
| 38 sys.error("Input error: sample names of input files, {} and {}, \ | |
| 39 does not share a common sample name. If these files \ | |
| 40 are paired end reads from the same sample, please rename \ | |
| 41 them with a common sample name (e.g. 's22_R1.fq', 's22_R2.fq') \ | |
| 42 or input them seperately.".format(infiles[0], infiles[1])) | |
| 43 | |
| 44 return sample_name.rstrip("-").rstrip("_") | |
| 45 | |
| 46 def is_gzipped(file_path): | |
| 47 ''' Returns True if file is gzipped and False otherwise. | |
| 48 The result is inferred from the first two bits in the file read | |
| 49 from the input path. | |
| 50 On unix systems this should be: 1f 8b | |
| 51 Theoretically there could be exceptions to this test but it is | |
| 52 unlikely and impossible if the input files are otherwise expected | |
| 53 to be encoded in utf-8. | |
| 54 ''' | |
| 55 with open(file_path, mode='rb') as fh: | |
| 56 bit_start = fh.read(2) | |
| 57 if(bit_start == b'\x1f\x8b'): | |
| 58 return True | |
| 59 else: | |
| 60 return False | |
| 61 | |
| 62 def get_file_format(input_files): | |
| 63 """ | |
| 64 Takes all input files and checks their first character to assess | |
| 65 the file format. Returns one of the following strings; fasta, fastq, | |
| 66 other or mixed. fasta and fastq indicates that all input files are | |
| 67 of the same format, either fasta or fastq. other indiates that all | |
| 68 files are not fasta nor fastq files. mixed indicates that the inputfiles | |
| 69 are a mix of different file formats. | |
| 70 """ | |
| 71 | |
| 72 # Open all input files and get the first character | |
| 73 file_format = [] | |
| 74 invalid_files = [] | |
| 75 for infile in input_files: | |
| 76 if is_gzipped(infile):#[-3:] == ".gz": | |
| 77 f = gzip.open(infile, "rb") | |
| 78 fst_char = f.read(1); | |
| 79 else: | |
| 80 f = open(infile, "rb") | |
| 81 fst_char = f.read(1); | |
| 82 f.close() | |
| 83 # Assess the first character | |
| 84 if fst_char == b"@": | |
| 85 file_format.append("fastq") | |
| 86 elif fst_char == b">": | |
| 87 file_format.append("fasta") | |
| 88 else: | |
| 89 invalid_files.append("other") | |
| 90 if len(set(file_format)) != 1: | |
| 91 return "mixed" | |
| 92 return ",".join(set(file_format)) | |
| 93 | |
| 94 def import_profile(database, scheme, loci_list): | |
| 95 """Import all possible allele profiles with corresponding st's | |
| 96 for the scheme into a dict. The profiles are stored in a dict | |
| 97 of dicts, to easily look up what st types are accosiated with | |
| 98 a specific allele number of each loci. | |
| 99 """ | |
| 100 # Open allele profile file from databaseloci | |
| 101 profile_file = open("{0}/{1}.txt.clean".format(database, scheme), "r") | |
| 102 profile_header = profile_file.readline().strip().split("\t")[1:len(loci_list)+1] | |
| 103 | |
| 104 # Create dict for looking up st-types with locus/allele combinations | |
| 105 st_profiles = {} | |
| 106 # For each locus initate make an inner dict to store allele and st's | |
| 107 for locus in loci_list: | |
| 108 st_profiles[locus] = {} | |
| 109 | |
| 110 # Fill inner dict with allele no as key and st-types seen with the allele as value | |
| 111 for line in profile_file: | |
| 112 profile = line.strip().split("\t") | |
| 113 st_name = profile[0] | |
| 114 allele_list = profile[1:len(loci_list)+1] | |
| 115 | |
| 116 # Go through all allele profiles. Save locus-allele combination with the st-type | |
| 117 for i in range(len(allele_list)): | |
| 118 allele = allele_list[i] | |
| 119 locus = profile_header[i] | |
| 120 if allele in st_profiles[locus]: | |
| 121 st_profiles[locus][allele] += [st_name] | |
| 122 else: | |
| 123 st_profiles[locus][allele] = [st_name] | |
| 124 profile_file.close() | |
| 125 | |
| 126 return st_profiles | |
| 127 | |
| 128 def st_typing(st_profiles, allele_matches, loci_list): | |
| 129 """ | |
| 130 Takes the path to a dictionary, the inp list of the allele | |
| 131 number that each loci has been assigned, and an output file string | |
| 132 where the found st type and similaity is written into it. | |
| 133 """ | |
| 134 | |
| 135 # Find best ST type for all allele profiles | |
| 136 st_output = "" | |
| 137 note = "" | |
| 138 | |
| 139 # First line contains matrix column headers, which are the specific loci | |
| 140 st_hits = [] | |
| 141 st_marks = [] | |
| 142 note = "" | |
| 143 | |
| 144 # Check the quality of the alle hits | |
| 145 for locus in allele_matches: | |
| 146 allele = allele_matches[locus]["allele"] | |
| 147 | |
| 148 # Check if allele is marked as a non-perfect match. Save mark and write note. | |
| 149 if "?*" in allele: | |
| 150 note += "?* {}: Imperfect hit, ST can not be trusted!\n".format(locus) | |
| 151 st_marks = ["?","*"] | |
| 152 elif "?" in allele: | |
| 153 note += "? {}: Uncertain hit, ST can not be trusted.\n".format(locus) | |
| 154 st_marks.append("?") | |
| 155 elif "*" in allele: | |
| 156 note += "* {}: Novel allele, ST may indicate nearest ST.\n".format(locus) | |
| 157 st_marks.append("*") | |
| 158 | |
| 159 # Remove mark from allele so it can be used to look up nearest st types | |
| 160 allele = allele.rstrip("*?!") | |
| 161 | |
| 162 # Get all st's that have the alleles in it's allele profile | |
| 163 st_hits += st_profiles[locus].get(allele, ["None"]) | |
| 164 if "alternative_hit" in allele_matches[locus] and allele_matches[locus]["alternative_hit"] != {}: | |
| 165 note += "! {}: Multiple perfect hits found\n".format(locus) | |
| 166 st_marks.append("!") | |
| 167 for allele_name, hit_info in allele_matches[locus]["alternative_hit"].items(): | |
| 168 allele = hit_info["allele"].rstrip("!") | |
| 169 st_hits += st_profiles[locus].get(allele, ["None"]) | |
| 170 | |
| 171 # Save allele marks to be transfered to the ST | |
| 172 st_mark = "".join(set(st_marks)) | |
| 173 notes = st_mark | |
| 174 # Add marks information to notes | |
| 175 if "!" in st_mark: | |
| 176 notes += " alleles with multiple perfect hits found, multiple STs might be found\n" | |
| 177 if "*" in st_mark and "?" in st_mark: | |
| 178 notes += " alleles with less than 100% identity and 100% coverages found\n" | |
| 179 elif st_mark == "*": | |
| 180 notes = st_mark + " alleles with less than 100% identity found\n" | |
| 181 elif st_mark == "?": | |
| 182 notes = st_mark + " alleles with less than 100% coverage found\n" | |
| 183 notes += note | |
| 184 | |
| 185 # Find most frequent st in st_hits | |
| 186 st_hits_counter = {} | |
| 187 max_count = 0 | |
| 188 best_hit = "" | |
| 189 for hit in st_hits: | |
| 190 if hit is not "None": | |
| 191 if hit in st_hits_counter: | |
| 192 st_hits_counter[hit] += 1 | |
| 193 else: | |
| 194 st_hits_counter[hit] = 1 | |
| 195 if max_count < st_hits_counter[hit]: | |
| 196 max_count = st_hits_counter[hit] | |
| 197 best_hit = hit | |
| 198 | |
| 199 # Check if allele profile match found st 100 % | |
| 200 similarity = round(float(max_count)/len(loci_list)*100, 2) | |
| 201 | |
| 202 if similarity != 100: | |
| 203 st = "Unknown" | |
| 204 nearest_sts = [] | |
| 205 # If st is not perfect find nearest st's | |
| 206 for st_hit, allele_score in sorted(st_hits_counter.items(), key=lambda x: x[1], reverse=True): | |
| 207 if allele_score < max_count: | |
| 208 break | |
| 209 nearest_sts.append(st_hit) | |
| 210 nearest_sts = ",".join(nearest_sts) #+ st_mark | |
| 211 else: | |
| 212 # allele profile has a perfect ST hit but the st marks given to the alleles might indicate imperfect hits | |
| 213 sts = [st for st, no in st_hits_counter.items() if no == max_count] | |
| 214 #if len(sts) > 1: | |
| 215 st = "{},".format(st_mark).join(sts) + st_mark | |
| 216 #st = best_hit + st_mark | |
| 217 nearest_sts = "" | |
| 218 | |
| 219 return st, notes, nearest_sts | |
| 220 | |
| 221 def make_aln(scheme, file_handle, allele_matches, query_aligns, homol_aligns, sbjct_aligns): | |
| 222 for locus, locus_info in allele_matches.items(): | |
| 223 allele_name = locus_info["allele_name"] | |
| 224 if allele_name == "No hit found": | |
| 225 continue | |
| 226 hit_name = locus_info["hit_name"] | |
| 227 | |
| 228 seqs = ["","",""] | |
| 229 seqs[0] = sbjct_aligns[scheme][hit_name] | |
| 230 seqs[1] = homol_aligns[scheme][hit_name] | |
| 231 seqs[2] = query_aligns[scheme][hit_name] | |
| 232 | |
| 233 write_align(seqs, allele_name, file_handle) | |
| 234 | |
| 235 | |
| 236 # write alternative seq | |
| 237 if "alternative_hit" in locus_info: | |
| 238 for allele_name in locus_info["alternative_hit"]: | |
| 239 hit_name = locus_info["alternative_hit"][allele_name]["hit_name"] | |
| 240 seqs = ["","",""] | |
| 241 seqs[0] = sbjct_aligns[scheme][hit_name] | |
| 242 seqs[1] = homol_aligns[scheme][hit_name] | |
| 243 seqs[2] = query_aligns[scheme][hit_name] | |
| 244 | |
| 245 write_align(seqs, allele_name, file_handle) | |
| 246 | |
| 247 def write_align(seq, seq_name, file_handle): | |
| 248 file_handle.write("# {}".format(seq_name) + "\n") | |
| 249 sbjct_seq = seq[0] | |
| 250 homol_seq = seq[1] | |
| 251 query_seq = seq[2] | |
| 252 for i in range(0,len(sbjct_seq),60): | |
| 253 file_handle.write("%-10s\t%s\n"%("template:", sbjct_seq[i:i+60])) | |
| 254 file_handle.write("%-10s\t%s\n"%("", homol_seq[i:i+60])) | |
| 255 file_handle.write("%-10s\t%s\n\n"%("query:", query_seq[i:i+60])) | |
| 256 | |
| 257 def text_table(headers, rows, empty_replace='-'): | |
| 258 ''' Create text table | |
| 259 | |
| 260 USAGE: | |
| 261 >>> from tabulate import tabulate | |
| 262 >>> headers = ['A','B'] | |
| 263 >>> rows = [[1,2],[3,4]] | |
| 264 >>> print(text_table(headers, rows)) | |
| 265 ********** | |
| 266 A B | |
| 267 ********** | |
| 268 1 2 | |
| 269 3 4 | |
| 270 ========== | |
| 271 ''' | |
| 272 # Replace empty cells with placeholder | |
| 273 rows = map(lambda row: map(lambda x: x if x else empty_replace, row), rows) | |
| 274 # Create table | |
| 275 table = tabulate(rows, headers, tablefmt='simple').split('\n') | |
| 276 # Prepare title injection | |
| 277 width = len(table[0]) | |
| 278 # Switch horisontal line | |
| 279 table[1] = '*'*(width+2) | |
| 280 # Update table with title | |
| 281 table = ("%s\n"*3)%('*'*(width+2), '\n'.join(table), '='*(width+2)) | |
| 282 return table | |
| 283 | |
| 284 | |
| 285 parser = argparse.ArgumentParser(description="") | |
| 286 # Arguments | |
| 287 parser.add_argument("-i", "--infile", | |
| 288 help="FASTA or FASTQ files to do pMLST on.", | |
| 289 nargs="+", required=True) | |
| 290 parser.add_argument("-o", "--outdir", | |
| 291 help="Output directory.", | |
| 292 default=".") | |
| 293 parser.add_argument("-s", "--scheme", | |
| 294 help="scheme database used for pMLST prediction", required=True) | |
| 295 parser.add_argument("-p", "--database", | |
| 296 help="Directory containing the databases.", default="/database") | |
| 297 parser.add_argument("-t", "--tmp_dir", | |
| 298 help="Temporary directory for storage of the results\ | |
| 299 from the external software.", | |
| 300 default="tmp_pMLST") | |
| 301 parser.add_argument("-mp", "--method_path", | |
| 302 help="Path to the method to use (kma or blastn)\ | |
| 303 if assembled contigs are inputted the path to executable blastn should be given,\ | |
| 304 if fastq files are given path to executable kma should be given") | |
| 305 parser.add_argument("-x", "--extented_output", | |
| 306 help="Give extented output with allignment files, template and query hits in fasta and\ | |
| 307 a tab seperated file with allele profile results", action="store_true") | |
| 308 parser.add_argument("-q", "--quiet", action="store_true") | |
| 309 | |
| 310 | |
| 311 #parser.add_argument("-c", "--coverage", | |
| 312 # help="Minimum template coverage required", default = 0.6) | |
| 313 #parser.add_argument("-i", "--identity", | |
| 314 # help="Minimum template identity required", default = 0.9) | |
| 315 args = parser.parse_args() | |
| 316 | |
| 317 if args.quiet: | |
| 318 f = open(os.devnull, 'w') | |
| 319 sys.stdout = f | |
| 320 | |
| 321 | |
| 322 #TODO what are the clonal complex data used for?? | |
| 323 | |
| 324 # TODO error handling | |
| 325 infile = args.infile | |
| 326 # Check that outdir is an existing dir... | |
| 327 outdir = os.path.abspath(args.outdir) | |
| 328 scheme = args.scheme | |
| 329 database = os.path.abspath(args.database) | |
| 330 tmp_dir = os.path.abspath(args.tmp_dir) | |
| 331 # Check if method path is executable | |
| 332 method_path = args.method_path | |
| 333 extented_output = args.extented_output | |
| 334 | |
| 335 min_cov = 0.6 # args.coverage | |
| 336 threshold = 0.95 # args.identity | |
| 337 | |
| 338 # Check file format (fasta, fastq or other format) | |
| 339 file_format = get_file_format(infile) | |
| 340 | |
| 341 db_path = "{}/".format(database, scheme) | |
| 342 | |
| 343 config_file = open(database + "/config","r") | |
| 344 | |
| 345 # Get profile_name from config file | |
| 346 scheme_list = [] | |
| 347 for line in config_file: | |
| 348 if line.startswith("#"): | |
| 349 continue | |
| 350 line = line.split("\t") | |
| 351 scheme_list.append(line[0]) | |
| 352 if line[0] == scheme: | |
| 353 profile_name = line[1] | |
| 354 | |
| 355 config_file.close() | |
| 356 | |
| 357 if scheme not in scheme_list: | |
| 358 sys.exit("{}, is not a valid scheme. \n\nPlease choose a scheme available in the database:\n{}".format(scheme, ", ".join(scheme_list))) | |
| 359 | |
| 360 # Get loci list from allele profile file | |
| 361 with open("{0}/{1}.txt.clean".format(database, scheme), "r") as st_file: | |
| 362 file_header = st_file.readline().strip().split("\t") | |
| 363 loci_list = file_header[1:] | |
| 364 | |
| 365 # Call appropriate method (kma or blastn) based on file format | |
| 366 if file_format == "fastq": | |
| 367 if not method_path: | |
| 368 method_path = "kma" | |
| 369 if shutil.which(method_path) == None: | |
| 370 sys.exit("No valid path to a kma program was provided. Use the -mp flag to provide the path.") | |
| 371 # Check the number of files | |
| 372 if len(infile) == 1: | |
| 373 infile_1 = infile[0] | |
| 374 infile_2 = None | |
| 375 elif len(infile) == 2: | |
| 376 infile_1 = infile[0] | |
| 377 infile_2 = infile[1] | |
| 378 else: | |
| 379 sys.exit("Only 2 input file accepted for raw read data,\ | |
| 380 if data from more runs is avaliable for the same\ | |
| 381 sample, please concatinate the reads into two files") | |
| 382 | |
| 383 sample_name = get_read_filename(infile) | |
| 384 method = "kma" | |
| 385 | |
| 386 # Call KMA | |
| 387 method_obj = CGEFinder.kma(infile_1, outdir, [scheme], db_path, min_cov=min_cov, | |
| 388 threshold=threshold, kma_path=method_path, sample_name=sample_name, | |
| 389 inputfile_2=infile_2, kma_mrs=0.75, kma_gapopen=-5, | |
| 390 kma_gapextend=-1, kma_penalty=-3, kma_reward=1) | |
| 391 | |
| 392 elif file_format == "fasta": | |
| 393 if not method_path: | |
| 394 method_path = "blastn" | |
| 395 if shutil.which(method_path) == None: | |
| 396 sys.exit("No valid path to a blastn program was provided. Use the -mp flag to provide the path.") | |
| 397 # Assert that only one fasta file is inputted | |
| 398 assert len(infile) == 1, "Only one input file accepted for assembled data." | |
| 399 infile = infile[0] | |
| 400 method = "blast" | |
| 401 | |
| 402 # Call BLASTn | |
| 403 method_obj = Blaster(infile, [scheme], db_path, tmp_dir, | |
| 404 min_cov, threshold, method_path, cut_off=False) | |
| 405 #allewed_overlap=50) | |
| 406 else: | |
| 407 sys.exit("Input file must be fastq or fasta format, not "+ file_format) | |
| 408 | |
| 409 results = method_obj.results | |
| 410 query_aligns = method_obj.gene_align_query | |
| 411 homol_aligns = method_obj.gene_align_homo | |
| 412 sbjct_aligns = method_obj.gene_align_sbjct | |
| 413 | |
| 414 # Check that the results dict is not empty | |
| 415 warning = "" | |
| 416 if results[scheme] == "No hit found": | |
| 417 results[scheme] = {} | |
| 418 warning = ("No MLST loci was found in the input data, " | |
| 419 "make sure that the correct pMLST scheme was chosen.") | |
| 420 | |
| 421 | |
| 422 allele_matches = {} | |
| 423 | |
| 424 # Get the found allele profile contained in the results dict | |
| 425 for hit, locus_hit in results[scheme].items(): | |
| 426 | |
| 427 # Get allele number for locus | |
| 428 allele_name = locus_hit["sbjct_header"] | |
| 429 allele_obj = re.search("(\w+)[_|-](\w+$)", allele_name) | |
| 430 | |
| 431 # Get variable to later storage in the results dict | |
| 432 locus = allele_obj.group(1) | |
| 433 allele = allele_obj.group(2) | |
| 434 coverage = float(locus_hit["perc_coverage"]) | |
| 435 identity = float(locus_hit["perc_ident"]) | |
| 436 score = float(locus_hit["cal_score"]) | |
| 437 gaps = int(locus_hit["gaps"]) | |
| 438 align_len = locus_hit["HSP_length"] | |
| 439 sbj_len = int(locus_hit["sbjct_length"]) | |
| 440 sbjct_seq = locus_hit["sbjct_string"] | |
| 441 query_seq = locus_hit["query_string"] | |
| 442 homol_seq = locus_hit["homo_string"] | |
| 443 cigar = extended_cigar(sbjct_aligns[scheme][hit], query_aligns[scheme][hit]) | |
| 444 | |
| 445 # Check for perfect hits | |
| 446 if coverage == 100 and identity == 100: | |
| 447 # If a perfect hit was already found the list more_perfect hits will exist this new hit is appended to this list | |
| 448 try: | |
| 449 allele_matches[locus]["alternative_hit"][allele_name] = {"allele":allele+"!", "align_len":align_len, "sbj_len":sbj_len, | |
| 450 "coverage":coverage, "identity":identity, "hit_name":hit} | |
| 451 if allele_matches[locus]["allele"][-1] != "!": | |
| 452 allele_matches[locus]["allele"] += "!" | |
| 453 except KeyError: | |
| 454 # Overwrite alleles already saved, save the perfect match and break to go to next locus | |
| 455 allele_matches[locus] = {"score":score, "allele":allele, "coverage":coverage, | |
| 456 "identity":identity, "match_priority": 1, "align_len":align_len, | |
| 457 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
| 458 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
| 459 "hit_name":hit, "cigar":cigar, "alternative_hit":{}} | |
| 460 else: | |
| 461 # If no hit has yet been stored initialize dict variables that are looked up below | |
| 462 if locus not in allele_matches: | |
| 463 allele_matches[locus] = {"score":0, "match_priority": 4} | |
| 464 | |
| 465 # We weight full coverage higher than perfect identity match | |
| 466 if coverage == 100 and identity != 100: | |
| 467 # Check that better (higher prioritized) 100% coverage hit has not been stored yet | |
| 468 if allele_matches[locus]["match_priority"] > 2 or (allele_matches[locus]["match_priority"] == 2 and score > allele_matches[locus]["score"]): | |
| 469 allele_matches[locus] = {"score":score, "allele":allele+"*", "coverage":coverage, | |
| 470 "identity":identity, "match_priority": 2, "align_len":align_len, | |
| 471 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
| 472 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
| 473 "hit_name":hit, "cigar":cigar} | |
| 474 elif coverage != 100 and identity == 100: | |
| 475 # Check that higher prioritized hit was not already stored | |
| 476 if allele_matches[locus]["match_priority"] > 3 or (allele_matches[locus]["match_priority"] == 3 and score > allele_matches[locus]["score"]): | |
| 477 allele_matches[locus] = {"score":score, "allele":allele + "?", "coverage":coverage, | |
| 478 "identity":identity, "match_priority": 3, "align_len":align_len, | |
| 479 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
| 480 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
| 481 "hit_name":hit, "cigar":cigar} | |
| 482 else: # coverage != 100 and identity != 100: | |
| 483 if allele_matches[locus]["match_priority"] == 4 and score > allele_matches[locus]["score"]: | |
| 484 allele_matches[locus] = {"score":score, "allele":allele + "?*", "coverage":coverage, | |
| 485 "identity":identity, "match_priority": 4, "align_len":align_len, | |
| 486 "gaps":gaps, "sbj_len":sbj_len, "allele_name":allele_name, | |
| 487 "sbjct_seq":sbjct_seq, "query_seq":query_seq, "homol_seq":homol_seq, | |
| 488 "hit_name":hit, "cigar":cigar} | |
| 489 for locus in loci_list: | |
| 490 if locus not in allele_matches: | |
| 491 allele_matches[locus] = {"identity":"", "coverage":"", "allele":"", "allele_name":"No hit found", "align_len":"", "gaps":"", "sbj_len":""} | |
| 492 | |
| 493 # Import all possible st profiles into dict | |
| 494 st_profiles = import_profile(database, scheme,loci_list) | |
| 495 | |
| 496 # Find st or neatest sts | |
| 497 st, note, nearest_sts = st_typing(st_profiles, allele_matches, loci_list) | |
| 498 | |
| 499 # Give warning of mlst schene if no loci were found | |
| 500 if note == "" and warning != "": | |
| 501 note = warning | |
| 502 | |
| 503 # Set ST for incF | |
| 504 if scheme.lower() == "incf": | |
| 505 st = ["F","A", "B"] | |
| 506 if "FII" in allele_matches and allele_matches["FII"]["identity"] == 100.0: | |
| 507 st[0] += allele_matches["FII"]["allele_name"].split("_")[-1] | |
| 508 elif "FIC" in allele_matches and allele_matches["FIC"]["identity"] == 100.0: | |
| 509 st[0] = "C" + allele_matches["FIC"]["allele_name"].split("_")[-1] | |
| 510 elif "FIIK" in allele_matches and allele_matches["FIIK"]["identity"] == 100.0: | |
| 511 st[0] = "K" + allele_matches["FIIK"]["allele_name"].split("_")[-1] | |
| 512 elif "FIIS" in allele_matches and allele_matches["FIIS"]["identity"] == 100.0: | |
| 513 st[0] = "S" + allele_matches["FIIS"]["allele_name"].split("_")[-1] | |
| 514 elif "FIIY" in allele_matches and allele_matches["FIIY"]["identity"] == 100.0: | |
| 515 st[0] = "Y" + allele_matches["FIIY"]["allele_name"].split("_")[-1] | |
| 516 else: | |
| 517 st[0] += "-" | |
| 518 | |
| 519 if "FIA" in allele_matches and allele_matches["FIA"]["identity"] == 100.0: | |
| 520 st[1] += allele_matches["FIA"]["allele_name"].split("_")[-1] | |
| 521 else: | |
| 522 st[1] += "-" | |
| 523 | |
| 524 if "FIB" in allele_matches and allele_matches["FIB"]["identity"] == 100.0: | |
| 525 st[2] += allele_matches["FIB"]["allele_name"].split("_")[-1] | |
| 526 else: | |
| 527 st[2] += "-" | |
| 528 | |
| 529 st = "["+":".join(st)+"]" | |
| 530 | |
| 531 | |
| 532 # Check if ST is associated with a clonal complex. | |
| 533 clpx = "" | |
| 534 if st != "Unknown" or nearest_sts != "": | |
| 535 with open("{0}/{1}.clpx".format(database,scheme), "r") as clpx_file: | |
| 536 for line in clpx_file: | |
| 537 line = line.split("\t") | |
| 538 if st[0] == line[0] or nearest_sts == line[0]: | |
| 539 clpx = line[1].strip() | |
| 540 | |
| 541 | |
| 542 # Get run info for JSON file | |
| 543 service = os.path.basename(__file__).replace(".py", "") | |
| 544 date = time.strftime("%d.%m.%Y") | |
| 545 time = time.strftime("%H:%M:%S") | |
| 546 | |
| 547 # TODO find a system to show the database and service version using git | |
| 548 | |
| 549 # Make JSON output file | |
| 550 data = {service:{}} | |
| 551 allele_results = {} | |
| 552 for locus, locus_info in allele_matches.items(): | |
| 553 allele_results[locus] = {"identity":0, "coverage":0, "allele":[], "allele_name":[], "align_len":[], "gaps":0, "sbj_len":[]} | |
| 554 for (key, value) in locus_info.items(): | |
| 555 if key in allele_results[locus] or (key == "alternative_hit" and value != {}): | |
| 556 allele_results[locus][key] = value | |
| 557 | |
| 558 userinput = {"filename":args.infile, "scheme":args.scheme, "profile":profile_name,"file_format":file_format} | |
| 559 run_info = {"date":date, "time":time}#, "database":{"remote_db":remote_db, "last_commit_hash":head_hash}} | |
| 560 server_results = {"sequence_type":st, "allele_profile": allele_results, | |
| 561 "nearest_sts":nearest_sts,"clonal_complex":clpx, "notes":note} | |
| 562 | |
| 563 data[service]["user_input"] = userinput | |
| 564 data[service]["run_info"] = run_info | |
| 565 data[service]["results"] = server_results | |
| 566 | |
| 567 pprint.pprint(data) | |
| 568 | |
| 569 # Save json output | |
| 570 result_file = "{}/data.json".format(outdir) | |
| 571 with open(result_file, "w") as outfile: | |
| 572 json.dump(data, outfile) | |
| 573 | |
| 574 if extented_output: | |
| 575 # Define extented output | |
| 576 table_filename = "{}/results_tab.tsv".format(outdir) | |
| 577 query_filename = "{}/Hit_in_genome_seq.fsa".format(outdir) | |
| 578 sbjct_filename = "{}/pMLST_allele_seq.fsa".format(outdir) | |
| 579 result_filename = "{}/results.txt".format(outdir) | |
| 580 table_file = open(table_filename, "w") | |
| 581 query_file = open(query_filename, "w") | |
| 582 sbjct_file = open(sbjct_filename, "w") | |
| 583 result_file = open(result_filename, "w") | |
| 584 | |
| 585 # Make results file | |
| 586 result_file.write("{0} Results\n\n".format(service)) | |
| 587 result_file.write("pMLST profile: {}\n\nSequence Type: {}\n".format(profile_name, st)) | |
| 588 # If ST is unknown report nearest ST | |
| 589 if st == "Unknown" and nearest_sts != "": | |
| 590 if len(nearest_sts.split(",")) == 1: | |
| 591 result_file.write("Nearest ST: {}\n".format(nearest_sts)) | |
| 592 else: | |
| 593 result_file.write("Nearest STs: {}\n".format(nearest_sts)) | |
| 594 | |
| 595 # Report clonal complex if one was associated with ST: | |
| 596 if clpx != "": | |
| 597 result_file.write("Clonal complex: {}\n".format(clpx)) | |
| 598 | |
| 599 # Write tsv table header | |
| 600 table_header = ["Locus", "Identity", "Coverage", "Alignment Length", "Allele Length", "Gaps", "Allele"] | |
| 601 table_file.write("\t".join(table_header) + "\n") | |
| 602 rows = [] | |
| 603 for locus, allele_info in allele_matches.items(): | |
| 604 | |
| 605 identity = str(allele_info["identity"]) | |
| 606 coverage = str(allele_info["coverage"]) | |
| 607 allele = allele_info["allele"] | |
| 608 allele_name = allele_info["allele_name"] | |
| 609 align_len = str(allele_info["align_len"]) | |
| 610 sbj_len = str(allele_info["sbj_len"]) | |
| 611 gaps = str(allele_info["gaps"]) | |
| 612 | |
| 613 # Write alleles names with indications of imperfect hits | |
| 614 if allele_name != "No hit found": | |
| 615 allele_name_w_mark = locus + "_" + allele | |
| 616 else: | |
| 617 allele_name_w_mark = allele_name | |
| 618 | |
| 619 # Write allele results to tsv table | |
| 620 row = [locus, identity, coverage, align_len, sbj_len, gaps, allele_name_w_mark] | |
| 621 rows.append(row) | |
| 622 if "alternative_hit" in allele_info: | |
| 623 for allele_name, dic in allele_info["alternative_hit"].items(): | |
| 624 row = [locus, identity, coverage, str(dic["align_len"]), str(dic["sbj_len"]), "0", allele_name + "!"] | |
| 625 rows.append(row) | |
| 626 # | |
| 627 | |
| 628 if allele_name == "No hit found": | |
| 629 continue | |
| 630 | |
| 631 # Write query fasta output | |
| 632 hit_name = allele_info["hit_name"] | |
| 633 query_seq = query_aligns[scheme][hit_name] | |
| 634 sbjct_seq = sbjct_aligns[scheme][hit_name] | |
| 635 homol_seq = homol_aligns[scheme][hit_name] | |
| 636 | |
| 637 if allele_info["match_priority"] == 1: | |
| 638 match = "PERFECT MATCH" | |
| 639 else: | |
| 640 match = "WARNING" | |
| 641 header = ">{}:{} ID:{}% COV:{}% Best_match:{}\n".format(locus, match, allele_info["identity"], | |
| 642 allele_info["coverage"], allele_info["allele_name"]) | |
| 643 query_file.write(header) | |
| 644 for i in range(0,len(query_seq),60): | |
| 645 query_file.write(query_seq[i:i+60] + "\n") | |
| 646 | |
| 647 # Write template fasta output | |
| 648 header = ">{}\n".format(allele_info["allele_name"]) | |
| 649 sbjct_file.write(header) | |
| 650 for i in range(0,len(sbjct_seq),60): | |
| 651 sbjct_file.write(sbjct_seq[i:i+60] + "\n") | |
| 652 | |
| 653 if "alternative_hit" in allele_info: | |
| 654 for allele_name in allele_info["alternative_hit"]: | |
| 655 header = ">{}:{} ID:{}% COV:{}% Best_match:{}\n".format(locus, "PERFECT MATCH", 100, | |
| 656 100, allele_name) | |
| 657 hit_name = allele_info["alternative_hit"][allele_name]["hit_name"] | |
| 658 query_seq = query_aligns[scheme][hit_name] | |
| 659 sbjct_seq = sbjct_aligns[scheme][hit_name] | |
| 660 homol_seq = homol_aligns[scheme][hit_name] | |
| 661 query_file.write(header) | |
| 662 for i in range(0,len(query_seq),60): | |
| 663 query_file.write(query_seq[i:i+60] + "\n") | |
| 664 | |
| 665 # Write template fasta output | |
| 666 header = ">{}\n".format(allele_name) | |
| 667 sbjct_file.write(header) | |
| 668 for i in range(0,len(sbjct_seq),60): | |
| 669 sbjct_file.write(sbjct_seq[i:i+60] + "\n") | |
| 670 | |
| 671 # Write Allele profile results tables in results file and table file | |
| 672 rows.sort(key=lambda x: x[0]) | |
| 673 result_file.write(text_table(table_header, rows)) | |
| 674 for row in rows: | |
| 675 table_file.write("\t".join(row) + "\n") | |
| 676 # Write any notes | |
| 677 if note != "": | |
| 678 result_file.write("\nNotes: {}\n\n".format(note)) | |
| 679 | |
| 680 # Write allignment output | |
| 681 result_file.write("\n\nExtended Output:\n\n") | |
| 682 make_aln(scheme, result_file, allele_matches, query_aligns, homol_aligns, sbjct_aligns) | |
| 683 | |
| 684 # Close all files | |
| 685 query_file.close() | |
| 686 sbjct_file.close() | |
| 687 table_file.close() | |
| 688 result_file.close() | |
| 689 | |
| 690 if args.quiet: | |
| 691 f.close() |
