Mercurial > repos > dereeper > pgap
view PGAP-1.2.1/Statistics/Distributions.pm @ 11:e0c913351502 draft default tip
Uploaded
author | dereeper |
---|---|
date | Thu, 01 Jul 2021 12:22:53 +0000 |
parents | 83e62a1aeeeb |
children |
line wrap: on
line source
package Statistics::Distributions; use strict; use vars qw($VERSION @ISA @EXPORT @EXPORT_OK); use constant PI => 3.1415926536; use constant SIGNIFICANT => 5; # number of significant digits to be returned require Exporter; @ISA = qw(Exporter AutoLoader); # Items to export into callers namespace by default. Note: do not export # names by default without a very good reason. Use EXPORT_OK instead. # Do not simply export all your public functions/methods/constants. @EXPORT_OK = qw(chisqrdistr tdistr fdistr udistr uprob chisqrprob tprob fprob); $VERSION = '1.02'; # Preloaded methods go here. sub chisqrdistr { # Percentage points X^2(x^2,n) my ($n, $p) = @_; if ($n <= 0 || abs($n) - abs(int($n)) != 0) { die "Invalid n: $n\n"; # degree of freedom } if ($p <= 0 || $p > 1) { die "Invalid p: $p\n"; } return precision_string(_subchisqr($n, $p)); } sub udistr { # Percentage points N(0,1^2) my ($p) = (@_); if ($p > 1 || $p <= 0) { die "Invalid p: $p\n"; } return precision_string(_subu($p)); } sub tdistr { # Percentage points t(x,n) my ($n, $p) = @_; if ($n <= 0 || abs($n) - abs(int($n)) != 0) { die "Invalid n: $n\n"; } if ($p <= 0 || $p >= 1) { die "Invalid p: $p\n"; } return precision_string(_subt($n, $p)); } sub fdistr { # Percentage points F(x,n1,n2) my ($n, $m, $p) = @_; if (($n<=0) || ((abs($n)-(abs(int($n))))!=0)) { die "Invalid n: $n\n"; # first degree of freedom } if (($m<=0) || ((abs($m)-(abs(int($m))))!=0)) { die "Invalid m: $m\n"; # second degree of freedom } if (($p<=0) || ($p>1)) { die "Invalid p: $p\n"; } return precision_string(_subf($n, $m, $p)); } sub uprob { # Upper probability N(0,1^2) my ($x) = @_; return precision_string(_subuprob($x)); } sub chisqrprob { # Upper probability X^2(x^2,n) my ($n,$x) = @_; if (($n <= 0) || ((abs($n) - (abs(int($n)))) != 0)) { die "Invalid n: $n\n"; # degree of freedom } return precision_string(_subchisqrprob($n, $x)); } sub tprob { # Upper probability t(x,n) my ($n, $x) = @_; if (($n <= 0) || ((abs($n) - abs(int($n))) !=0)) { die "Invalid n: $n\n"; # degree of freedom } return precision_string(_subtprob($n, $x)); } sub fprob { # Upper probability F(x,n1,n2) my ($n, $m, $x) = @_; if (($n<=0) || ((abs($n)-(abs(int($n))))!=0)) { die "Invalid n: $n\n"; # first degree of freedom } if (($m<=0) || ((abs($m)-(abs(int($m))))!=0)) { die "Invalid m: $m\n"; # second degree of freedom } return precision_string(_subfprob($n, $m, $x)); } sub _subfprob { my ($n, $m, $x) = @_; my $p; if ($x<=0) { $p=1; } elsif ($m % 2 == 0) { my $z = $m / ($m + $n * $x); my $a = 1; for (my $i = $m - 2; $i >= 2; $i -= 2) { $a = 1 + ($n + $i - 2) / $i * $z * $a; } $p = 1 - ((1 - $z) ** ($n / 2) * $a); } elsif ($n % 2 == 0) { my $z = $n * $x / ($m + $n * $x); my $a = 1; for (my $i = $n - 2; $i >= 2; $i -= 2) { $a = 1 + ($m + $i - 2) / $i * $z * $a; } $p = (1 - $z) ** ($m / 2) * $a; } else { my $y = atan2(sqrt($n * $x / $m), 1); my $z = sin($y) ** 2; my $a = ($n == 1) ? 0 : 1; for (my $i = $n - 2; $i >= 3; $i -= 2) { $a = 1 + ($m + $i - 2) / $i * $z * $a; } my $b = PI; for (my $i = 2; $i <= $m - 1; $i += 2) { $b *= ($i - 1) / $i; } my $p1 = 2 / $b * sin($y) * cos($y) ** $m * $a; $z = cos($y) ** 2; $a = ($m == 1) ? 0 : 1; for (my $i = $m-2; $i >= 3; $i -= 2) { $a = 1 + ($i - 1) / $i * $z * $a; } $p = max(0, $p1 + 1 - 2 * $y / PI - 2 / PI * sin($y) * cos($y) * $a); } return $p; } sub _subchisqrprob { my ($n,$x) = @_; my $p; if ($x <= 0) { $p = 1; } elsif ($n > 100) { $p = _subuprob((($x / $n) ** (1/3) - (1 - 2/9/$n)) / sqrt(2/9/$n)); } elsif ($x > 400) { $p = 0; } else { my ($a, $i, $i1); if (($n % 2) != 0) { $p = 2 * _subuprob(sqrt($x)); $a = sqrt(2/PI) * exp(-$x/2) / sqrt($x); $i1 = 1; } else { $p = $a = exp(-$x/2); $i1 = 2; } for ($i = $i1; $i <= ($n-2); $i += 2) { $a *= $x / $i; $p += $a; } } return $p; } sub _subu { my ($p) = @_; my $y = -log(4 * $p * (1 - $p)); my $x = sqrt( $y * (1.570796288 + $y * (.03706987906 + $y * (-.8364353589E-3 + $y *(-.2250947176E-3 + $y * (.6841218299E-5 + $y * (0.5824238515E-5 + $y * (-.104527497E-5 + $y * (.8360937017E-7 + $y * (-.3231081277E-8 + $y * (.3657763036E-10 + $y *.6936233982E-12))))))))))); $x = -$x if ($p>.5); return $x; } sub _subuprob { my ($x) = @_; my $p = 0; # if ($absx > 100) my $absx = abs($x); if ($absx < 1.9) { $p = (1 + $absx * (.049867347 + $absx * (.0211410061 + $absx * (.0032776263 + $absx * (.0000380036 + $absx * (.0000488906 + $absx * .000005383)))))) ** -16/2; } elsif ($absx <= 100) { for (my $i = 18; $i >= 1; $i--) { $p = $i / ($absx + $p); } $p = exp(-.5 * $absx * $absx) / sqrt(2 * PI) / ($absx + $p); } $p = 1 - $p if ($x<0); return $p; } sub _subt { my ($n, $p) = @_; if ($p >= 1 || $p <= 0) { die "Invalid p: $p\n"; } if ($p == 0.5) { return 0; } elsif ($p < 0.5) { return - _subt($n, 1 - $p); } my $u = _subu($p); my $u2 = $u ** 2; my $a = ($u2 + 1) / 4; my $b = ((5 * $u2 + 16) * $u2 + 3) / 96; my $c = (((3 * $u2 + 19) * $u2 + 17) * $u2 - 15) / 384; my $d = ((((79 * $u2 + 776) * $u2 + 1482) * $u2 - 1920) * $u2 - 945) / 92160; my $e = (((((27 * $u2 + 339) * $u2 + 930) * $u2 - 1782) * $u2 - 765) * $u2 + 17955) / 368640; my $x = $u * (1 + ($a + ($b + ($c + ($d + $e / $n) / $n) / $n) / $n) / $n); if ($n <= log10($p) ** 2 + 3) { my $round; do { my $p1 = _subtprob($n, $x); my $n1 = $n + 1; my $delta = ($p1 - $p) / exp(($n1 * log($n1 / ($n + $x * $x)) + log($n/$n1/2/PI) - 1 + (1/$n1 - 1/$n) / 6) / 2); $x += $delta; $round = sprintf("%.".abs(int(log10(abs $x)-4))."f",$delta); } while (($x) && ($round != 0)); } return $x; } sub _subtprob { my ($n, $x) = @_; my ($a,$b); my $w = atan2($x / sqrt($n), 1); my $z = cos($w) ** 2; my $y = 1; for (my $i = $n-2; $i >= 2; $i -= 2) { $y = 1 + ($i-1) / $i * $z * $y; } if ($n % 2 == 0) { $a = sin($w)/2; $b = .5; } else { $a = ($n == 1) ? 0 : sin($w)*cos($w)/PI; $b= .5 + $w/PI; } return max(0, 1 - $b - $a * $y); } sub _subf { my ($n, $m, $p) = @_; my $x; if ($p >= 1 || $p <= 0) { die "Invalid p: $p\n"; } if ($p == 1) { $x = 0; } elsif ($m == 1) { $x = 1 / (_subt($n, 0.5 - $p / 2) ** 2); } elsif ($n == 1) { $x = _subt($m, $p/2) ** 2; } elsif ($m == 2) { my $u = _subchisqr($m, 1 - $p); my $a = $m - 2; $x = 1 / ($u / $m * (1 + (($u - $a) / 2 + (((4 * $u - 11 * $a) * $u + $a * (7 * $m - 10)) / 24 + (((2 * $u - 10 * $a) * $u + $a * (17 * $m - 26)) * $u - $a * $a * (9 * $m - 6) )/48/$n )/$n )/$n)); } elsif ($n > $m) { $x = 1 / _subf2($m, $n, 1 - $p) } else { $x = _subf2($n, $m, $p) } return $x; } sub _subf2 { my ($n, $m, $p) = @_; my $u = _subchisqr($n, $p); my $n2 = $n - 2; my $x = $u / $n * (1 + (($u - $n2) / 2 + (((4 * $u - 11 * $n2) * $u + $n2 * (7 * $n - 10)) / 24 + (((2 * $u - 10 * $n2) * $u + $n2 * (17 * $n - 26)) * $u - $n2 * $n2 * (9 * $n - 6)) / 48 / $m) / $m) / $m); my $delta; do { my $z = exp( (($n+$m) * log(($n+$m) / ($n * $x + $m)) + ($n - 2) * log($x) + log($n * $m / ($n+$m)) - log(4 * PI) - (1/$n + 1/$m - 1/($n+$m))/6 )/2); $delta = (_subfprob($n, $m, $x) - $p) / $z; $x += $delta; } while (abs($delta)>3e-4); return $x; } sub _subchisqr { my ($n, $p) = @_; my $x; if (($p > 1) || ($p <= 0)) { die "Invalid p: $p\n"; } elsif ($p == 1){ $x = 0; } elsif ($n == 1) { $x = _subu($p / 2) ** 2; } elsif ($n == 2) { $x = -2 * log($p); } else { my $u = _subu($p); my $u2 = $u * $u; $x = max(0, $n + sqrt(2 * $n) * $u + 2/3 * ($u2 - 1) + $u * ($u2 - 7) / 9 / sqrt(2 * $n) - 2/405 / $n * ($u2 * (3 *$u2 + 7) - 16)); if ($n <= 100) { my ($x0, $p1, $z); do { $x0 = $x; if ($x < 0) { $p1 = 1; } elsif ($n>100) { $p1 = _subuprob((($x / $n)**(1/3) - (1 - 2/9/$n)) / sqrt(2/9/$n)); } elsif ($x>400) { $p1 = 0; } else { my ($i0, $a); if (($n % 2) != 0) { $p1 = 2 * _subuprob(sqrt($x)); $a = sqrt(2/PI) * exp(-$x/2) / sqrt($x); $i0 = 1; } else { $p1 = $a = exp(-$x/2); $i0 = 2; } for (my $i = $i0; $i <= $n-2; $i += 2) { $a *= $x / $i; $p1 += $a; } } $z = exp((($n-1) * log($x/$n) - log(4*PI*$x) + $n - $x - 1/$n/6) / 2); $x += ($p1 - $p) / $z; $x = sprintf("%.5f", $x); } while (($n < 31) && (abs($x0 - $x) > 1e-4)); } } return $x; } sub log10 { my $n = shift; return log($n) / log(10); } sub max { my $max = shift; my $next; while (@_) { $next = shift; $max = $next if ($next > $max); } return $max; } sub min { my $min = shift; my $next; while (@_) { $next = shift; $min = $next if ($next < $min); } return $min; } sub precision { my ($x) = @_; return abs int(log10(abs $x) - SIGNIFICANT); } sub precision_string { my ($x) = @_; if ($x) { return sprintf "%." . precision($x) . "f", $x; } else { return "0"; } } # Autoload methods go after =cut, and are processed by the autosplit program. 1; __END__ # Below is the stub of documentation for your module. You better edit it! =head1 NAME Statistics::Distributions - Perl module for calculating critical values and upper probabilities of common statistical distributions =head1 SYNOPSIS use Statistics::Distributions; $chis=Statistics::Distributions::chisqrdistr (2,.05); print "Chi-squared-crit (2 degrees of freedom, 95th percentile " ."= 0.05 level) = $chis\n"; $u=Statistics::Distributions::udistr (.05); print "u-crit (95th percentile = 0.05 level) = $u\n"; $t=Statistics::Distributions::tdistr (1,.005); print "t-crit (1 degree of freedom, 99.5th percentile = 0.005 level) " ."= $t\n"; $f=Statistics::Distributions::fdistr (1,3,.01); print "F-crit (1 degree of freedom in numerator, 3 degrees of freedom " ."in denominator, 99th percentile = 0.01 level) = $f\n"; $uprob=Statistics::Distributions::uprob (-0.85); print "upper probability of the u distribution (u = -0.85): Q(u) " ."= 1-G(u) = $uprob\n"; $chisprob=Statistics::Distributions::chisqrprob (3,6.25); print "upper probability of the chi-square distribution (3 degrees " ."of freedom, chi-squared = 6.25): Q = 1-G = $chisprob\n"; $tprob=Statistics::Distributions::tprob (3,6.251); print "upper probability of the t distribution (3 degrees of " ."freedom, t = 6.251): Q = 1-G = $tprob\n"; $fprob=Statistics::Distributions::fprob (3,5,.625); print "upper probability of the F distribution (3 degrees of freedom " ."in numerator, 5 degrees of freedom in denominator, F = 6.25): " ."Q = 1-G = $fprob\n"; =head1 DESCRIPTION This Perl module calculates percentage points (5 significant digits) of the u (standard normal) distribution, the student's t distribution, the chi-square distribution and the F distribution. It can also calculate the upper probability (5 significant digits) of the u (standard normal), the chi-square, the t and the F distribution. These critical values are needed to perform statistical tests, like the u test, the t test, the F test and the chi-squared test, and to calculate confidence intervals. If you are interested in more precise algorithms you could look at: StatLib: http://lib.stat.cmu.edu/apstat/ ; Applied Statistics Algorithms by Griffiths, P. and Hill, I.D., Ellis Horwood: Chichester (1985) =head1 BUGS This final version 1.02 has been released after more than one year without a bug report on the previous version 0.07. Nevertheless, if you find any bugs or oddities, please do inform the author. =head1 INSTALLATION See perlmodinstall for information and options on installing Perl modules. =head1 AVAILABILITY The latest version of this module is available from the Distribution Perl Archive Network (CPAN). Please visit http://www.cpan.org/ to find a CPAN site near you or see http://www.cpan.org/authors/id/M/MI/MIKEK/ . =head1 AUTHOR Michael Kospach <mike.perl@gmx.at> Nice formating, simplification and bug repair by Matthias Trautner Kromann <mtk@id.cbs.dk> =head1 COPYRIGHT Copyright 2003 Michael Kospach. All rights reserved. This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =head1 SEE ALSO Statistics::ChiSquare, Statistics::Table::t, Statistics::Table::F, perl(1). =cut