Mercurial > repos > dereeper > roary_plots
diff Roary/bin/roary-create_pan_genome_plots.R @ 0:c47a5f61bc9f draft
Uploaded
author | dereeper |
---|---|
date | Fri, 14 May 2021 20:27:06 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Roary/bin/roary-create_pan_genome_plots.R Fri May 14 20:27:06 2021 +0000 @@ -0,0 +1,59 @@ +#!/usr/bin/env Rscript +# ABSTRACT: Create R plots +# PODNAME: create_plots.R +# Take the output files from the pan genome pipeline and create nice plots. +library(ggplot2) + + +mydata = read.table("number_of_new_genes.Rtab") +boxplot(mydata, data=mydata, main="Number of new genes", + xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) + +mydata = read.table("number_of_conserved_genes.Rtab") +boxplot(mydata, data=mydata, main="Number of conserved genes", + xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) + +mydata = read.table("number_of_genes_in_pan_genome.Rtab") +boxplot(mydata, data=mydata, main="No. of genes in the pan-genome", + xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) + +mydata = read.table("number_of_unique_genes.Rtab") +boxplot(mydata, data=mydata, main="Number of unique genes", + xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) + +mydata = read.table("blast_identity_frequency.Rtab") +plot(mydata,main="Number of blastp hits with different percentage identity", xlab="Blast percentage identity", ylab="No. blast results") + + +library(ggplot2) +conserved = colMeans(read.table("number_of_conserved_genes.Rtab")) +total = colMeans(read.table("number_of_genes_in_pan_genome.Rtab")) + +genes = data.frame( genes_to_genomes = c(conserved,total), + genomes = c(c(1:length(conserved)),c(1:length(conserved))), + Key = c(rep("Conserved genes",length(conserved)), rep("Total genes",length(total))) ) + +ggplot(data = genes, aes(x = genomes, y = genes_to_genomes, group = Key, linetype=Key)) +geom_line()+ +theme_classic() + +ylim(c(1,max(total)))+ +xlim(c(1,length(total)))+ +xlab("No. of genomes") + +ylab("No. of genes")+ theme_bw(base_size = 16) + theme(legend.justification=c(0,1),legend.position=c(0,1))+ +ggsave(filename="conserved_vs_total_genes.png", scale=1) + +###################### + +unique_genes = colMeans(read.table("number_of_unique_genes.Rtab")) +new_genes = colMeans(read.table("number_of_new_genes.Rtab")) + +genes = data.frame( genes_to_genomes = c(unique_genes,new_genes), + genomes = c(c(1:length(unique_genes)),c(1:length(unique_genes))), + Key = c(rep("Unique genes",length(unique_genes)), rep("New genes",length(new_genes))) ) + +ggplot(data = genes, aes(x = genomes, y = genes_to_genomes, group = Key, linetype=Key)) +geom_line()+ +theme_classic() + +ylim(c(1,max(unique_genes)))+ +xlim(c(1,length(unique_genes)))+ +xlab("No. of genomes") + +ylab("No. of genes")+ theme_bw(base_size = 16) + theme(legend.justification=c(1,1),legend.position=c(1,1))+ +ggsave(filename="unique_vs_new_genes.png", scale=1)