Mercurial > repos > dereeper > roary_plots
view Roary/bin/roary-create_pan_genome_plots.R @ 3:e95344f6dfc5 draft default tip
Uploaded
author | dereeper |
---|---|
date | Fri, 12 Nov 2021 16:32:26 +0000 |
parents | c47a5f61bc9f |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # ABSTRACT: Create R plots # PODNAME: create_plots.R # Take the output files from the pan genome pipeline and create nice plots. library(ggplot2) mydata = read.table("number_of_new_genes.Rtab") boxplot(mydata, data=mydata, main="Number of new genes", xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) mydata = read.table("number_of_conserved_genes.Rtab") boxplot(mydata, data=mydata, main="Number of conserved genes", xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) mydata = read.table("number_of_genes_in_pan_genome.Rtab") boxplot(mydata, data=mydata, main="No. of genes in the pan-genome", xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) mydata = read.table("number_of_unique_genes.Rtab") boxplot(mydata, data=mydata, main="Number of unique genes", xlab="No. of genomes", ylab="No. of genes",varwidth=TRUE, ylim=c(0,max(mydata)), outline=FALSE) mydata = read.table("blast_identity_frequency.Rtab") plot(mydata,main="Number of blastp hits with different percentage identity", xlab="Blast percentage identity", ylab="No. blast results") library(ggplot2) conserved = colMeans(read.table("number_of_conserved_genes.Rtab")) total = colMeans(read.table("number_of_genes_in_pan_genome.Rtab")) genes = data.frame( genes_to_genomes = c(conserved,total), genomes = c(c(1:length(conserved)),c(1:length(conserved))), Key = c(rep("Conserved genes",length(conserved)), rep("Total genes",length(total))) ) ggplot(data = genes, aes(x = genomes, y = genes_to_genomes, group = Key, linetype=Key)) +geom_line()+ theme_classic() + ylim(c(1,max(total)))+ xlim(c(1,length(total)))+ xlab("No. of genomes") + ylab("No. of genes")+ theme_bw(base_size = 16) + theme(legend.justification=c(0,1),legend.position=c(0,1))+ ggsave(filename="conserved_vs_total_genes.png", scale=1) ###################### unique_genes = colMeans(read.table("number_of_unique_genes.Rtab")) new_genes = colMeans(read.table("number_of_new_genes.Rtab")) genes = data.frame( genes_to_genomes = c(unique_genes,new_genes), genomes = c(c(1:length(unique_genes)),c(1:length(unique_genes))), Key = c(rep("Unique genes",length(unique_genes)), rep("New genes",length(new_genes))) ) ggplot(data = genes, aes(x = genomes, y = genes_to_genomes, group = Key, linetype=Key)) +geom_line()+ theme_classic() + ylim(c(1,max(unique_genes)))+ xlim(c(1,length(unique_genes)))+ xlab("No. of genomes") + ylab("No. of genes")+ theme_bw(base_size = 16) + theme(legend.justification=c(1,1),legend.position=c(1,1))+ ggsave(filename="unique_vs_new_genes.png", scale=1)